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Résumé du manuscrit

Ce manuscrit décrit mes principaux axes de recherche autour du thème général de
la modélisation du langage des partitions musicales. Ces travaux se situent dans la dis-
cipline de la Recherche d’Information Musicale (Music Information Retrieval, MIR).
Le manuscrit est organisé autour de trois chapitres, portant respectivement sur le
répertoire classique, les tablatures de guitare dans le répertoire moderne populaire
et l’application de techniques de Traitement Automatique du Langage Naturel dans
le domaine musical.

Assister l’analyse musicale : modélisation du langage du répertoire classique

Le Chapitre 2 se focalise sur l’analyse musicale assistée par ordinateur dans le réper-
toire de la musique classique. Il rend compte entre autres d’une partie des travaux
de la thèse de L. Feisthauer (2017 - 2021), sur la modélisation de la structure musi-
cale, que j’ai co-encadré avec F. Levé et M. Giraud, ainsi que du travail de thèse de
L. Couturier (2021 - 2024), sur la texture musicale, que je co-encadre actuellement
avec F. Levé.

La première contribution propose une méthode élaborée dans le cadre de la thèse
de L. Feisthauer pour la modélisation de cadences dans les partitions (Bigo et al.,
2018). Les cadences correspondent à des phénomènes perceptifs conclusifs large-
ment utilisés dans le style classique pour marquer la fin d’une phrase musicale. Ces
éléments jouent un rôle essentiel dans la structure des pièces musicales et de manière
plus générale dans les mécanismes d’anticipation que nous percevons à l’écoute de
ces pièces. Un ensemble de 44 descripteurs issus de la théorie musicale sont utilisés
pour calculer une représentation abstraite de la partition à chaque pulsation. Un
classifieur est ensuite entraîné à corréler les valeurs de ces descripteurs avec un en-
semble d’annotations expertes, permettant l’identification automatique de cadences
dans de nouvelles partitions.

Nous décrivons ensuite un axe de recherche dédié à la modélisation de la texture
symbolique dans les partitions pour piano. Les travaux de stage et de première année
de thèse de L. Couturier ont permis l’élaboration d’une syntaxe décrivant la texture
pianistique dans le répertoire classique à un haut niveau de précision (Couturier,
Bigo, and Levé, 2022b). Cette description a lieu à l’échelle de la mesure. Elle rend
notamment compte de la fonction musicale (mélodique, harmonique ou statique),
des relations entre voix et de la présence d’un ensemble de figures musicales car-
actéristiques de ce répertoire. Cette syntaxe a déjà été utilisée pour la constitution
d’un ensemble d’annotations ouvrant des perspectives pour l’entraînement de mod-
èles d’apprentissage automatique dédiés à l’analyse de texture, la génération guidée
par la texture et le transfert de style (Couturier, Bigo, and Levé, 2022a).

Ce chapitre décrit ensuite un algorithme pour la segmentation structurelle de
partitions suivant le shéma général de la Forme Sonate (Bigo et al., 2017; Allegraud
et al., 2019). De manière analogue à la détection de cadences, un ensemble de de-
scripteurs dédiés sont implémentés et utilisés comme observations d’un modèle de
Markov caché entraîné à identifier les bordures des différentes sections de la forme
Sonate. On se penchera enfin sur le problème précis de la détection de Medial Caesura
qui constitue un marqueur structurel essentiel de cette forme musicale (Feisthauer,
Bigo, and Giraud, 2019).
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Perspectives

Mes perspectives de recherche sur cet axe se concentrent essentiellement sur la mod-
élisation de la texture pour piano qui fait l’objet du travail de thèse de L. Couturier.
Elles comprennent en premier lieu la proposition d’une variété de métriques per-
mettant d’évaluer la distance séparant deux textures symboliques. Il est notamment
prévu d’expérimenter le potentiel d’algorithmes d’apprentissage non supervisé, tels
que les auto-encodeurs variationnels, pour la construction d’espaces texturaux dont
l’organisation interne aura vocation à refléter de manière intuitive l’appréhension de
la texture par le musicien. Nous espérons par la suite exploiter ce type de représenta-
tions dans un cadre d’aide à la composition. Les liens fondamentaux entre texture et
style musical permettront aux modèles élaborés dans le cadre de la thèse de L. Cou-
turier d’être utilisés pour des tâches de transfert de style, par exemple dans le cas où
la mélodie et l’harmonie d’une première pièce musicale sont conservés tout en adop-
tant la texture d’une seconde. La construction de modèles reflétant notre perception
de la texture musicale pourra être orientée par la réalisation de tests d’écoutes lors
desquels il est demandé aux sujets de quantifier la similarité ressentie entre des stim-
ulis de texture variable.

Assister la composition musicale : modélisation du langage des tablatures
de guitare

Le Chapitre 3 porte sur la composition musicale assistée par ordinateur, dans le cas
particulier de la musique pour guitare dans le répertoire moderne populaire. Cet axe
de recherche fait l’objet d’une collaboration industrielle avec l’entreprise Arobas Mu-
sic qui édite le logiciel Guitar Pro et maintient le corpus de tablatures MySongBook
auquel l’entreprise fournit à l’équipe Algomus un accès exclusif pour ces recherches,
ainsi qu’avec le musicologue B. Navarret (Sorbonne Université, Iremus), spécialiste
en pratique de la guitare. Ce chapitre décrit notamment les travaux de stage de
J. Cournut et de D. Régnier, ainsi que la thèse d’A. D’Hooge (2022 - 2025) que je
co-encadre actuellement avec K. Deguernel et M. Giraud. Cet axe de recherche fait
enfin l’objet du projet ANR JCJC TABASCO (2022 - 2026) dont je suis le coordinateur.

La première contribution décrite dans ce chapitre consiste en un ensemble d’outils
destinés à faciliter l’exploitation des données de MySongBook dans des tâches d’appren-
tissage automatique. Ces outils comprennent un parseur Music21 facilitant la ma-
nipulation de fichiers Guitar Pro dans le langage Python, ainsi qu’un ensemble d’encodeurs
permettant la représentation des tablatures de guitare sous la forme de vecteurs bi-
naires nécessaires pour l’entraînement de réseaux de neurones (Cournut et al., 2020).
En prélude aux tâches d’apprentissage automatique qui constituent l’objectif central
de ce projet, ces outils ont permis d’effectuer une étude statistique dans MySong-
Book rendant compte de propriétés variées sur les positions majoritairement utilisés
par les guitaristes (Cournut et al., 2021).

Ce chapitre décrit ensuite une méthode destinée à l’identification automatique de
la fonction musicale d’une tablature, en particulier sa vocation à jouer un rôle de pre-
mier plan, comme c’est le cas dans un solo, ou un rôle de second plan, comme c’est
le cas dans une partie d’accompagnement (Régnier, Martin, and Bigo, 2021). Au delà
de l’interprétation des résultats obtenus sur le plan musicologique, l’élaboration de
cette méthode est motivée par la perspective de distinguer au sein de MySongBook
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des sous-corpus consistant, facilitant l’entraînement de modèles destinés à assister
la composition de tablatures associées à une fonction musicale précise.

La dernière contribution présentée dans ce chapitre présente une méthode pour
la continuation de guitare rythmique par imitation de texture. Dans cette tâche, un
modèle est entraîné à généraliser un style de texture, spécifié par un extrait de tabla-
ture de référence, à une séquence d’accords arbitraire. Se distinguant de la majorité
des algorithmes présentés dans ce travail, cette méthode met en jeu un modèle des-
tiné à apprendre la texture musicale de manière implicite à travers la description bas
niveau des tablatures sur lesquelles il est entraîné.

Perspectives

Les perspectives de cette recherche constituent les axes du projet ANR TABASCO,
dédié à l’élaboration d’outils issus de l’intelligence artificielle pour assister la compo-
sition de musique pour guitare, que je coordonne depuis le 1er octobre 2022 jusqu’au
mois de septembre 2026. Le projet TABASCO comprend en premier lieu une étude
sur les pratiques de composition de musique pour guitare dans le style populaire
moderne. Cette étude sera menée en collaboration rapprochée avec notre collège
musicologue B. Navarret. Elle aura pour but d’améliorer notre compréhension du
rôle du logiciel de notation au sein du processus de composition dans les musiques
de ce répertoire, ainsi que d’identifier les fonctionnalités logiciel qui pourraient con-
tribuer au renouvellement de ces pratiques de composition. La suite du projet se
concentrera sur l’élaboration et l’évaluation de ces fonctionnalités, principalement
dans le cadre de la thèse d’A. D’Hooge. Guidée par les résultats de cette étude
préliminaire, la partie algorithmique du projet se focalisera sur la composition de
parties de guitare rythmique, en particulier sur la construction d’espaces de textures
analogues à ceux pressentis pour la modélisation de la texture pour piano (thèse de
L. Couturier). Poursuivant l’élaboration d’outils dédiés à la composition de parties
d’accompagnement, le projet comprendra une partie se concentrant sur la généra-
tion de parties de guitare basse, respectant une séquence d’accords arbitraire, et
conditionnées par un style spécifié par une pièce de référence. Le projet comprendra
enfin un axe sur la modélisation des techniques de jeux, ayant pour but d’offrir au
compositeur un contrôle fin sur l’expressivité de sa tablature. Le projet comprend
enfin un ensemble de contributions open-source visant à faciliter la manipulation
de tablatures de guitare par la communauté MIR, ainsi qu’une évaluation par des
compositeurs des outils conçus au terme du projet.

Méthodes de Traitement Automatique du Langage Naturel pour la mod-
élisation de partitions

Le Chapitre 4 présente un ensemble de réflexions et d’expériences visant à évaluer
les apports du domaine du Traitement Automatique du Langage Naturel (TALN, ou
NLP pour Natural Language Processing) pour la modélisation de partitions musicales.
Ce sujet est motivé par le constat d’une utilisation croissante en recherche musicale
d’algorithmes concus et pensés à l’origine pour le texte, contribuant à nous ques-
tionner sur la pertinence, le potentiel et les limites du rapprochement de ces deux
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domaines. Ce projet de recherche inter-disciplinaire est co-supervisé par l’équipe Al-
gomus pour l’informatique musicale, et l’équipe MAGNET pour le TALN, en parti-
culier M. Keller avec qui j’ai initié ce projet en 2019. Il fait l’objet d’une collaboration
bilatérale entre Algomus et l’équipe AMAAI de Singapore University of Technology
and Design (SUTD) financé par un partenariat Hubert Curien de Campus France
dont je suis coordinateur, et qui m’a permis de réaliser une visite de recherche de 10
jours au AMAAI en août 2022.

La première contribution décrite dans ce chapitre consiste en l’étude de la manière
dont s’applique le principe d’attention mutuelle (self-attention) dans les partitions mu-
sicales (Keller et al., 2021; Keller, Loiseau, and Bigo, 2021). Dans le domaine du texte,
pour lequel il à été définit à l’origine, ce mécanisme permet d’identifier des liens
entre des mots distants, rendant compte par exemple de règles grammaticales sub-
tiles. Bien qu’utilisé de manière croissante dans le domaine musical, l’interprétation
du principe d’attention dans l’espace d’une partition fait encore l’objet d’une com-
préhension limitée. Le travail de stage de G. Loiseau propose un cadre permettant
d’évaluer l’expressivité musicale de l’information stockée dans les valeurs d’attention
d’un réseau de neurones transformer. La méthode proposée consiste dans un pre-
mier temps à entrainer un transformer sur une large base de données musicale,
puis à utiliser le modèle entrainé pour extraire de manière systématique des rela-
tions d’attention associée à une nouvelle séquence musicale. L’expressivité de ces
relations est ensuite évaluée à travers deux tâches musicales : la classification par
compositeur et la détection de cadences.

La seconde contribution porte sur le principe de tokenization qui consiste à représen-
ter la partition musicale sous la forme d’une séquence d’éléments atomiques, des to-
kens, afin de coller au cadre des séquences de mots du texte et permettre l’application
directe d’algorithmes de TALN sur des corpus de partitions. Le travail de stage de
M. Kermarec a permi d’élaborer et évaluer une méthode de tokenization invariante
par transposition, dispensant le recours à l’augmentation de données par transposi-
tion généralement nécéssaire au modèle pour généraliser les connaissances musi-
cales apprises de manière uniforme dans les différentes tonalités (Kermarec, Bigo,
and Keller, 2022).

Perspectives

Les perspectives de ce projet de recherche correspondent essentiellement aux axes
pressentis pour la thèse de D.-V.-T. Le (2022 - 2025). L’interdisciplinarité caractérisant
ce projet nous encourage en premier lieu à dresser un état de l’art croisé réunis-
sant des techniques de TALN, des représentations et tâches en MIR, ainsi que des
expériences ayant croisé les deux domaines, dans le but d’identifier une cartogra-
phie des usages dans cette discipline. Dans la lignée du travail de stage de M. Ker-
marec, nous questionnerons et mènerons des expériences concernant la représenta-
tion séquentielle de contenu musical. Au delà de la sélection d’un dictionnaire de
tokens appropriés à l’information musicale, nous nous focaliserons sur l’utilisation
en musique d’algorithmes récents, tels que WordPiece et Byte Pair Encoding visant à
ajouter au dictionnaire des super tokens représentant les n-grams prédominants dans
un corpus de référence. Cette méthode a vocation à faciliter l’apprentissage par le
modèle de connaissances abstraites, au prix d’une dépendance croissante au cor-
pus d’apprentissage. Nous expérimenterons ces limites pour la modélisation d’un
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style musical définit par un corpus d’œuvres de référence. Une partie importante
de ce projet portera par ailleurs sur le potentiel du transfer learning en musique, où
un modèle est pré-entraîné sur un large ensemble de données non étiquetées, puis
ajusté pour une tâche aval spécifique pour laquelle n’est généralement disponible
qu’un ensemble limité de données étiquetées. Enfin, ces travaux auront vocation à
contribuer à une réflexion épistémologique générale sur les parallèles et divergences
entre musique et langage naturel.
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Chapter 1

Introduction

This manuscript presents research in the field of Music Information Retrieval that
I have been working on over the past 7 years in the Algomus team of the CRIStAL
laboratory at the University of Lille. The interdisciplinary field of Music Information
Retrieval (MIR) aims at elaborating computational tools dedicated to the processing
of musical data. MIR involves a variety of applications including among others com-
puter assisted music analysis and composition. While MIR techniques are intended
to process a variety of digital formats such as audio waveforms, the present research
exclusively focus on the processing of symbolic representations of music, which are
generally comparable to the content of a musical score.

The three axes of this manuscript are unified under the general notion of musical
language modeling. Chapter 2 presents a variety of computational methods dedicated
to the study of essential components the classical style. Chapter 3 focus on represen-
tations and algorithms aiming at modeling language elements of guitar tablatures in
modern popular music. Chapter 4 presents experiments aiming at gaining some per-
spective regarding the application of Natural Language Processing (NLP) methods
to address musical tasks.

This introduction presents selected aspects of MIR, which play an important role
in the experiments presented in the next chapters. After a brief overview of repre-
sentations, datasets and tasks, we will present a common machine learning approach
that has been used for most of the research presented here.

1.1 Processing musical data

1.1.1 Computer music representations

As illustrated in Figure 1.1, musical data can be collected into digital corpora mostly
in three possible types of representations: audio, images and symbolic. Accessing
music information in audio signals and score images require specific signal pro-
cessing (Muller et al., 2011) and optical recognition tools (Calvo-Zaragoza, Jr, and
Pacha, 2020). In particular, the processing of musical audio data commonly involves
the Fourier transform which converts a signal that depends on time into a repre-
sentation that depends on frequency. Frequency information are commonly pro-
cessed with dedicated representations including spectrograms and chroma features,
which facilitate the analysis of some higher-level musical aspects including timbre
and pitch. The use of Fourier analysis in music processing is largely described for
research and pedagogy purpose by Müller (2015). Signal processing tools dedicated
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FIGURE 1.1: Different types of musical representations. Computer
formats of symbolic representations can be processed to extract
higher level musical information. Different levels of music represen-
tations can be encoded as simple data structures such as vectors and
sequences, to be processed by ML algorithms. The figure includes fig-
ures from (Müller, 2015; Hadjeres, Pachet, and Nielsen, 2017; Huang

et al., 2019; Briot, Hadjeres, and Pachet, 2019)

to MIR research are today provided through programming language libraries such
as the Librosa (McFee et al., 2015) and Essentia (Bogdanov et al., 2013) packages.

In contrast, symbolic representations explicitly encode music information at a
higher level, for instance the level of notes and chords. Symbolic formats include
text formats such as MusicXML, MEI, ABC, and Humdrum **kern, as well as the
binary MIDI format. A variety of tools have been elaborated to facilitate the com-
putational processing of symbolic music representations. The music21 python pack-
age (Cuthbert and Ariza, 2010), which has been used in most of the works presented
in the next chapters, encodes score data as complex data structures with a high level
of precision. In contrast, the Partitura package (Cancino-Chacón et al., 2022) allows
lightweight extractions of selected musical features intended to be processed by ML
(Machine Learning) algorithms.

The application of common ML algorithms, such as neural networks, requires
data to be represented as simple data structures such as sequences and vectors of
binary values. Briot, Hadjeres, and Pachet (2019) review most approaches that are
used in MIR to represent musical data as sequences of binary vectors compatible
with the training of machine learning models. Generative models, such as the tex-
ture imitation model presented in Section 3.3.5, generally require to be trained on
vectors representing low level information in order to have the ability to output
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complete musical information in the sense that the result includes enough informa-
tion to encode a content that can be listened. In contrast, music analysis models as
those presented in Chapters 2 and 3, can process vectors of higher level representa-
tions, possibly with a higher loss of information, as they are not expected to produce
listenable content on their output.

Although the research described in this manuscript is limited to the processing of
symbolic representations, recent progress in audio-to-score transcription (Hawthorne
et al., 2019) and optical music recognition (Calvo-Zaragoza, Jr, and Pacha, 2020)
seem to suggest possible future benefits of symbolic music algorithms on much
larger corpora, originating from large audio and score image file collections. Alter-
natively, deep-learning techniques seem to open the door to new approaches mixing
both types of representations. This is for example the case with transfer learning
where a model can be pretrained with symbolic data to improve its accuracy for
some audio-to-score transcription task (Liang, Fazekas, and Sandler, 2019). In a gen-
eral way, it seems that the popularization of neural networks in all fields also seems
to contribute to bridge the gap between these MIR communities which used to em-
ploy much different tools, for instance signal processing methods for audio data and
music theory-driven expert rule systems for symbolic data.

1.1.2 MIR datasets

Computational music analysis and generation tasks commonly target the modeling
of a musical style. The availability of representative stylistic datasets is crucial for the
evaluation of style models as they enable to measure their accuracy by confronting
them to real musical data. In case of machine learning approaches, datasets are also
required to train and parameter models. For these reasons, the MIR community has
raised a number of research initiatives dedicated to the transcription and annota-
tion of curated corpora1 intended to support computational experiments in music
analysis and generation.

A reasonable stylistic uniformity is commonly assumed for a corpus of works in
the same instrumental configuration (e.g., string quartets or piano solo) composed
by one single composer, although this uniformity naturally tends to vary across the
pieces forming the corpus. Corpora in a given instrumental configuration include
for instance four-voice chorales, piano sonatas or string quartets, from famous com-
posers such as J.-S. Bach, J. Haydn, W.A. Mozart and L.v. Beethoven. Beyond western
classical music, the MIR community also puts substantial efforts in the creation of
corpora of modern music, including popular and jazz, as well as under-represented
cultural musical styles. Table 1.1 lists the different corpora that have been used in
the research described in this report.

In addition to the raw encoding of musical content, such as audio waveforms,
score images and textual score descriptions, MIR research makes use of expert anno-
tations which label musical content at various time granularity, to indicate high-level
musical information, for instance relating to key, structure or style. Expert musical
annotations are however often expensive to produce as they generally require spe-
cific musical skills and substantial time resources. To facilitate this process, a number

1https://www.ismir.net/resources/datasets/

https://www.ismir.net/resources/datasets/
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of annotations tools are elaborated in MIR, such as the Dezrann web platform2 de-
veloped by the Algomus team (Garczynski et al., 2022).

Datasets with expert annotations may thus be used as a reference to train and
evaluate MIR models, even if these annotations are often subject to debate between
experts given the inherent ambiguity and subjectivity of music. Experts may also
have different analytical methods, resulting in distinct datasets. Ideally, MIR tools
and models should be able to take into account this variety in the expert views.

1.2 Computer-assisted music analysis and composition

Music analysis and composition are related, as they may use the same concepts and
features. It is known that musicians may benefit from this relation by learning and
practicing both tasks. Analogously, analysis and generative algorithms are likely
to be based on common representations, and models. In the next two sections, we
briefly discuss some aspects of these fields, highlighting specific MIR challenges.

1.2.1 Computer-assisted music analysis

Computational Music Analysis gathers research aiming at collecting data and elab-
orating representations and algorithms to assist or automate music analysis. This
section details several benefits of such approaches in music analysis.

First, computational approaches allow the processing of large volumes of data
that would be impossible to process manually. This facilitates for instance the ex-
haustive study of a musical repertoire and the drawing of representative conclu-
sions. Secondly, the ubiquitous use of computer science in a variety of fields sug-
gests the adaptation of algorithms that have been conceived to process other data
in other domains such as image, text or biology, providing original approaches to
music analysis. Third, data-driven experiments incidentally allow the confirmation
or refutation of some musical intuitions. For instance, we addressed cadence de-
tection in Section 2.3.1 by implementing expert knowledge features mentioned in
music theory writings and that we felt correlated with cadence occurrences. This
process allowed a fine study of each of these features and highlighted unexpected
correlations and disconnections with cadence occurrences.

Although computational music analysis research frequently targets the imple-
mentation of predictive algorithms, these tools rarely seem directly used by musi-
cologists thereafter. There are more chances however for these algorithms to be used,
or to inspire, building blocks of more general systems dedicated to music analysis
or even generation. For instance, a model intended to generate music could ben-
efit from a specific step dedicated to the building of sophisticated cadences at the
end of musical phrases. Finally, and from a more general musical point of view, the
simple evaluation of an algorithm intended to model a musical concept provides
presumable insights regarding the complexity of this concept. The evaluation of our
cadence detection model in Section 2 showed for instance that half-cadences appear
to be more complex objects than authentic cadences.

2http://www.dezrann.net

http://www.dezrann.net
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1.2.2 Computer-assisted music composition

Elaborating computational tools to assist or imitate music composition has been the
purpose of multiple research since the beginning of computer science. This includes
for instance the Illiac Suite by Hiller and Isaacson (1959), which is often considered as
the first computer generated piece. Music composition has motivated the conception
of a variety of generative algorithms elaborated in the MIR community, which have
been comparatively described in different surveys including those of Herremans,
Chuan, and Chew (2017) and Briot, Hadjeres, and Pachet (2019). Aiming at facilitat-
ing the use of algorithmic tools by composers, a number of composition dedicated
software has been developed including the visual programming language Open-
Music (Bresson, Agon, and Assayag, 2011) and the MAX library bach (Agostini and
Ghisi, 2015). Alternatively, integrating composition algorithms as functionalities of
composition environments has become a major concern in the last years with several
attempts within music production software such as Ableton Live (Esling et al., 2019;
Roberts et al., 2019) or within music notation software such as MuseScore (Hadjeres,
Pachet, and Nielsen, 2017) or Finale (Lupker, 2021). From a broader perspective, the
use of computational tools by composer is becoming itself an active topic of discus-
sion and research (Kayacik et al., 2019; Ben-Tal, Harris, and Sturm, 2021; Deruty et
al., 2022).

Compositional practices however considerably vary among composers, includ-
ing within a same musical style. Designing tools to assist music composition there-
fore faces in the first instance the challenge of identifying common composition sit-
uations for which such tools might be beneficial. One way to address this challenge
is to limit the tool’s role to punctual steps of the composition process. The designed
tool will then be limited to one particular musical task, such as melody creation,
harmonization, orchestration, voicing, texture designing, structure building, or no-
tation. The texture imitation method presented in Section 3.3.5 follows this idea, by
proposing to the composer the rendering of a given chord symbol in the style of a
reference texture.

In contrast with these task-specialized tools, another part of MIR research at-
tempts to build autonomous generative systems intended to produce musical pieces
in the same manner composers do. The recent progress in artificial intelligence in the
last decades have particularly contributed to promote this practice3, reaching to an
increasing proportion of MIR research focusing on this task. My research interests in
this field however are more in line with the first approach, in which algorithms are
intended to be used as punctual tools by the composer instead of aiming at substi-
tuting him.

1.3 A common ML prediction framework

An important part of the research described in this document consists in predic-
tion tasks that have been addressed with a common machine learning methodology
which is described in this section. Given a corpus of musical scores, on which a
particular kind of labels have been manually annotated by expert musicologists, a

3As presented by Briot, Hadjeres, and Pachet (2019), music generation has been the purpose of
experiments with major deep learning techniques elaborated in other applications including CNNs,
RNNs, transformers, GANs or VAEs.
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light4 machine-learning classifier is set up and trained to predict occurrences of these
manual labels on the corpus scores, which are represented in an abstract way. These
abstract representations result from the computation of high-level musical features
judiciously selected according to the targeted task. Examples of such features are
mean pitch, or presence of a major triad. Selecting features is commonly performed
jointly with a reflection on the time granularity at which these features must be com-
puted. While signal processing tasks will commonly compute features in an absolute
time granularity (e.g., every millisecond or every second), symbolic MIR will gener-
ally use the time of the score, computing features for instance at each beat or each
bar of the musical score.

The training of light machine learning models on high-level representations has
somehow become a specificity of the Algomus team over the past years, includ-
ing applications in cadence, structure or texture prediction. This approach contrasts
however with a predominant tendency in MIR research, which consists in train-
ing deep models on low-level representations. In this last approach, the successive
layers of the network are expected to model increasingly abstract features (Briot,
Hadjeres, and Pachet, 2019)5. Deep music models are somehow expected to au-
tonomously model in their first layers the musical knowledge that we explicitly pro-
vide by selecting and computing expert high-level features on the musical score.

I see two major justifications to the preference of light models:

• Explainability: beyond the setting-up of a predictive model, the use of high-
level features facilitates our understanding of the musical phenomena that we
aim at predicting (cadences, textures, structure, etc.) and favors musicological
side findings. Such findings might occur for instance when we compare how
each high-level feature contributes to the performance of the predictive model.

• Volume of data and model complexity: in addition to their inherent complex-
ity, abstract musical phenomena such as cadences, textures or structures are
challenging to model with supervised machine-learning methods given the
generally limited amount of available annotated data. Pre-computing high-
level features enables to reduce the amount of abstraction the model is ex-
pected to learn, and therefore reduces the volume of data required to train the
model6.

High-level feature approaches nevertheless require a careful selection of a repre-
sentative set of features to be computed according to the current task, which can only
result from a substantial musical expertise. Such approaches therefore require a cru-
cial proximity with the musicological community, its terminology and its research
on high-level musical concepts. Explicitly adding musical expertise in models also
makes them necessarily dependent to some aspects of music theory and reduces
their potential adaptability to alternative or future musical styles.

4By light classifier we mean a classifier which is not a deep neural network.
5The ability of deep neural networks to model increasingly abstract features is commonly illustrated

with computer vision tasks, where modeling of shapes in the first layers allows the modeling of objects
in the following ones.

6The preference for machine learning models that are less complex and that require less training
data also fits with a growing concern in machine-learning research aiming at reducing energy con-
sumption (Douwes, Esling, and Briot, 2021).
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corpus
features/annotations

time granularity
(dataset size)

features feature
example

annotation
example model

Cadence detection
(analysis)

Section 2.3.1

24 Bach fugues
42 Haydn quartets

expositions

beat
(B:4739
H:7173)

44 Y-Z-bass-moves
-compatible-V-I PAC SVM

(label prediction)

Texture labelling
(analysis)

Section 2.3.2

9 Mozart
piano sonatas
movements

bar
(1164) 62 mean number of

simultaneous notes M1/HS1 log-reg
(label prediction)

Form segmentation
(analysis)

Section 2.3.3

32 Mozart
string quartets

movements

beat
(14318) 26 triple

hammer blow
Primary
theme

HMM
(label prediction)

Function identification
(analysis)

Section 3.3.4

102 MySongBook
tablatures

bar
(7487) 31 mean fret Rhythm

guitar
LSTM

(label prediction)

Texture imitation
(composition)
Section 3.3.5

1617 MySongBook
tablatures

1
16 note

(200 000)
157 {string 2;fret 5} - GRU

(content generation)

TABLE 1.1: An overview of the tasks and associated models used in
the research described in chapters 2 and 3.

It is worth noting that high-level features could possibly be used to complete low-
level representations and make them more expressive for a number of analysis and
generation tasks. While our approach in music analysis tasks rather consists in us-
ing high-level features in substitution of low-level representations, using high-level
features alone appears in turn more complicated for generation tasks. In contrast
with analysis models, generative models that are expected to generate raw musical
content must indeed be trained on data including representations at this same level.
Completing these representations with high-level features has shown however to be
beneficial, in particular for the control of the generation (Kawai, Esling, and Harada,
2020; Makris, Agres, and Herremans, 2021).

Table 1.1 summarizes the different tasks that we have been addressing in Chap-
ters 2 and 3, with their associated models. Although Chapter 4 describes some exper-
iments in composer classification and end-of-phrase detection, they are not included
in the table because they have not been designed for the tasks themselves, but rather
to study specific aspects of some models and representations.

Evaluation Machine learning experiments commonly involve the separation of the
data into a training set, a validation set and a test set, with respective size being typi-
cally around 60%, 20% and 20% of the whole dataset. The training set is used to train
the model, the validation set is used to evaluate and compare different versions of
the model and the test set is only used at the end to measure the best model’s per-
formance on a completely unseen subset, in order to avoid overfitting. The training
set is often the largest subset, as increasing the training set size is known to improve
the ability of the model to generalize to unseen data. The validation set and the train
set nevertheless need to keep a reasonable size in order to be representative enough
of the whole dataset and therefore provide an accurate evaluation of the model.

This trade-off is particularly critical for small datasets, as it is often the case in
symbolic music processing, where each subset requires the largest possible amount
of data to ensure both an efficient training and a representative evaluation. K-fold
cross-validation consists in iterating different trainings for k different splits of the data
between the training set and the validation set. The performance of the model is then
provided by computing the mean and variance of the performances obtained in the
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successive experiments. Although this method is only sustainable for small datasets
due to the multiple trainings it requires, the final performance is presumably more
representative of the model as all the data in both subsets have been evaluated. To
the extreme (i.e., k = 1), leave-one-out cross-validation consists in evaluating a single
data on a model trained on all the others, and iterating this process on all the data.

Symbolic MIR datasets often consist in corpora of musical scores, that might
themselves be split into shorter data depending on the task e.g., sections, bars or
beats. The high repetitiveness inherent to most tonal music generally exposes the
leave-one-out cross-validation to potential overfitting, where the model would be eval-
uated on data that has previously been used for the training. This would happen at
short scale for repeated patterns, and at a larger scale for repeated sections, such as
the Exposition and the Recapitulation of a piece having a Sonata form structure.

As an alternative to leave-one-out cross-validation, most of the models presented
in this document have been evaluated with a dedicated process we call leave-one-
piece-out cross-validation which consists in a k-fold cross-validation in which each fold
is associated with one song of the corpus. One major difference with standard k-fold
cross-validation is that the size of the different folds (k) might vary depending on the
length of the pieces of the corpus. One way to address this is to weight the different
folds accordingly in order to keep equal importance of all data.
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Chapter 2

Assisting music analysis: modeling
the language of the classical
repertoire

The research described in this chapter aims at modeling fundamental components of
the musical language of the Viennese classical style, which is often represented by the
instrumental music of J. Haydn, W.A. Mozart and L.v. Beethoven. The classical style
is commonly associated with a set of language elements or conventions, the clearest
of which is mentioned by Rosen (1997) as the short, periodic, articulated phrase.
Due to the consistency of a number of these composition conventions, the classical
style has become a breeding ground for corpus studies (Caplin, 2001). Fitting into
this framework, this research considers that a number of composition conventions in
classical music, such as cadences and textures, importantly contribute to the listener’s
expectation and promote the association of this style with a feeling of language.

In addition to compositional consistency, the classical repertoire is characterized
by a large volume of works, involving various instrumental formations such as solo
piano, string quartet or symphonic ensemble. This profusion of musical scores has
contributed to encourage data-driven approaches to analyze this repertoire, necessi-
tating the transcription of digital corpora that have a raised an important effort in the
last decade in the MIR community. An important part of these scores is nowadays
available in computer-interpretable formats such as Humdrum **kern, musicXML,
or MEI, making possible their processing by computer programs.

This chapter opens with a brief presentation of some essential components of the
classical style, followed by an overview of different computational research dedi-
cated to this repertoire. I will then give an overview of contributions in computa-
tional classical music analysis in which I was involved. I will particularly focus on
cadence modeling as a part of the PhD work of L. Feisthauer (2017 - 2021) that I have
been co-supervising with F. Levé and M. Giraud, as well as texture modeling as the
topic of the PhD work of L. Couturier (2021 - 2024) that I am co-supervising with
F. Levé.

2.1 Elements of language in the classical style

An essential feature shared by music and natural language is their ability to induce
expectation in the listener. However, while expectation in natural language results



10
Chapter 2. Assisting music analysis: modeling the language of the classical

repertoire

FIGURE 2.1: Last 8 bars of the exposition part of the first movement
of the Sonata facile (Piano Sonata No. 16, K.545) by W.A. Mozart with
some components typical of the classical language annotated. Tex-
tures include a call and response pattern between the two hands (1.a),
repeated accompaniment chord referred in Section 2.3.2 as a static tex-
ture (1.b), an Alberti bass (1.c) and sparse chords (1.d). A perfect au-
thentic cadence (2), followed by repeated V/I cadential progressions

and a triple hammer blow at the end of the extract (3).

from semantics, expectation in music necessarily relies on alternative specific mech-
anisms, arguably related to the notion of musical style (Huron, 2008).

For instance, musical scores in the classical style are commonly divided into con-
secutive phrases. Musical phrases are characterized by a melodic segment and their
underlying harmony commonly ends with a conclusive formula called cadence (mod-
elled in section 2.3.1). Related to instrument configuration, texture (modelled in sec-
tion 2.3.2) shapes the melody and the harmony in various forms, which strongly
contribute to affirm the classical style of the piece. The use of keys and modulations
between these keys contribute to a progressive narration. Finally, classical pieces
are commonly built at a higher level following specific structures, such as the Sonata
Form (modelled in section 2.3.3). Figure 2.1 illustrates some of these language com-
ponents in an extract of a piano sonata from W.A. Mozart.
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2.2 Computational modeling of classical music

The classical era left us an abundant repertoire of musical scores. Large and stylis-
tically uniform corpora arouse a particular attention in the MIR community due to
their promising ability to consistently train machine learning algorithms that aim at
generalizing a musical style for unseen or generated data.

Crucial for the evaluation of models and the training of supervised machine
learning algorithms, dataset contributions generally include the release of consistent
score corpora accompanied by expert manual annotations of various abstract musi-
cal features. These annotations include for instance structural sections, keys, chord
regions (commonly notated in relations with keys with the Roman numeral syntax),
cadences or end of phrases. The creation, annotation and curation of annotated cor-
pora has become an essential discipline within the MIR community, with particular
efforts regarding classical corpora by teams such as DCML in EPFL, Lausanne.

We give here some representative examples of annotated corpora that have been
used and sometimes created or extended by the Algomus team in late research. The
Annotated Beethoven Corpus created by Neuwirth et al. (2018) includes harmony
Roman numeral annotations for the complete set of string quartets by L.v. Beethoven,
and was used for automatic harmonic analysis by Micchi, Gotham, and Giraud
(2020). The Annotated Mozart Sonatas by Hentschel, Neuwirth, and Rohrmeier
(2021) gathers 54 sonata movements with harmony, phrase and cadence annotations,
and was used along with our texture reference annotation (Couturier, Bigo, and
Levé, 2022a) for the modeling of symbolic texture as presented in Section 2.3.2. Sears
et al. (2017) have released key region and cadence annotations on 50 sonata-form ex-
positions selected from Haydn’s string quartets, which we used for our research in
cadence modeling presented in Section 2.3.1. The Algomus team also released struc-
ture annotations of 32 movements of string quartets by W.A. Mozart (Allegraud et
al., 2019), that we used for Sonata Form modelling as presented in Section 2.3.3. We
can also mention the TAVERN dataset released by Devaney et al. (2015), which in-
cludes phrase annotations that we used to compare the expressiveness of different
symbolic representations in Section 4.2.2.

2.3 Contributions

2.3.1 Modeling of the classical cadence

Cadences

Musical phrases in the Western tonal repertoire often end with strong harmonic for-
mulas called cadences1. Two phrases terminating with a cadence are illustrated in
Figure 2.2. Despite this explicit structural function, cadences are defined in theoret-
ical writings in a wide variety of ways. Based on a review of multiple music theory
papers, Blombach (1987) defines the cadence as “any musical element or combination of
musical elements, including silence, that indicates relative relaxation or relative conclusion
in music”. This definition highlights the way a listener (whether musically trained or
not) can hear the presence of a cadence by feeling that the music “breaths”. A cadence

1from the Latin cadere, “to fall”
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FIGURE 2.2: First two phrases of the Impromptu No.3 (variations) in B-
flat Major, D.935, Op.142 of F. Schubert. The first four-bar phrase ends
with a half-cadence (HC). The second one with a perfect authentic

cadence (PAC).

is generally characterized by, possibly co-occurring, local musical elements, includ-
ing a specific harmonic progression, a falling melody or a rhythm break. However,
the (co)-occurrence of these elements do not necessarily imply a cadence.

Music theory commonly distinguishes various types of cadences classified by
their underlying harmonic progression, with each progression inducing a specific
feeling of closure. An authentic cadence (AC) is characterized by a dominant harmony
(notated V) followed by a tonic harmony (notated I). In the American terminology,
when both chords are in root position and the melody ends on the tonic, the authen-
tic cadence is said to be perfect (PAC), otherwise it is imperfect (IAC). The term rIAC
refers to an IAC that is in root position. Half cadences (HC) end with a dominant
harmony, generally in root position2. Figure 2.2 illustrates a PAC and a HC on the
first two phrases of an Impromptu of F. Schubert. Less common types of cadences
include the deceptive cadence (DC) which is an authentic cadence where the expected
final tonic is replaced by another harmony (often VI).

Sears, Caplin, and McAdams (2014) classify cadence types by strength, with Au-
thentic Cadences coming first, followed by Half Cadences, then Deceptive Cadences.
Notable in the frame of our parallel between music and natural language, cadences
are commonly compared with punctuation in text. In particular, PACs are compared
to the dot, indicating a definitive termination of the current phrase, while HCs are
compared to the comma, indicating that something is terminating but that the lis-
tener is likely to expect something else to come3.

Cadences are temporal processes that generally span over several successive
beats, sometimes several bars, although they are commonly annotated in musical
scores at their very last beat as shown in Figure 2.2. Using a preparation chord prior
to the dominant chord, generally a subdominant harmony (SD, that is II, IV, or V/V),

2A chord is in root position if its root is played at the lowest pitch.
3Caplin (2004) however, justifiably points out that a more correct analogy with linguistic would

compare cadences to syntactical closures rather than punctuation which consists in written signs external
to the language.
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FIGURE 2.3: Haydn, op. 17/4, iv, PAC at measure 8. The high-level
features computed at the beat with a PAC annotation provide infor-
mation on harmony, voice-leading ( 1©, 2©, 4© and 5©) and rhythm ( 3©).

(Bigo et al., 2018).

strengthens the salience of a PAC/rIAC. In contrast, DC and related cadences renew
tension, extending the musical phrase and delaying closure until a more conclusive
cadence is used.

Our work on cadence modeling has focused on Authentic Cadences and Half
Cadences, which are presumably the most frequent types of cadences in the classical
repertoire.

Cadence detection

This section presents our research on cadence detection (Bigo et al., 2018), which
includes a part of L. Feisthauer’s PhD (2018-2021) that I co-supervised with F. Levé
and M. Giraud. Following the method described in Section 1.3, a set of 44 score
features were identified, from music theory writings, as presumably correlated with
cadence occurrence. These features were then extracted from two music corpora
that includes manual annotations of cadences, and used to train an SVM model for
predicting these annotations.

The selected features are computed at each beat of the score. They are boolean
and can broadly be separated into categories focussing on voice-leading, harmonic
and rhythmic aspects. Given the temporal nature of cadences, the computation of a
majority of the 44 features requires, in addition to the present beat, information re-
garding its short past and future. For example, the feature Y-Z-bass-moves-compatible-V-I
checks if the voice-leading move between the two bottom voice notes preceding the
present beat fits with the typical move of a IV - V (sub-dominant - dominant) pro-
gression. The whole set of features is detailed in our article (Bigo et al., 2018).

Figure 2.3 illustrates a Perfect Authentic Cadence (PAC) annotated at the first
beat of the eighth bar of Haydn’s string quartet op. 17/4, iv. Among other properties,
the 44 computed features explicitly encode the following knowledge:



14
Chapter 2. Assisting music analysis: modeling the language of the classical

repertoire

pieces voices beats PAC (final) rIAC HC
Haydn string quartets 42 expositions 4 7173 99 (21) 8 70
Bach fugues 24 fugues 2 to 5 4739 63 (23) 24 5

TABLE 2.1: Description of the two annotated corpora used to train
and evaluate our cadence detection model. Annotations from the
Haydn string quartet corpus have been done by Sears et al. (2017).
Annotations from the Bach fugues corpus have been done by Giraud
et al. (2015). The numbers show that cadences are labeled at about
2% of the beats, resulting in a highly unbalanced dataset (Bigo et al.,

2018).

• Harmonic features: the set of notes sounding at this beat form a perfect triad
(C minor in this case) and the pitch-class of the highest note (C) is the tonic of
the triad.

• Voice-leading features: the notes preceding this triad induce a 7→ 1 move at
the upper voice (see 1© in Figure 2.3), a 4 → 3 move in an intermediate voice
( 2©), and a 5 → 1 move in the bottom voice ( 4©). On the bottom voice, the last
distinct note (F) induces a 4→ 5→ 1 move ( 5©).

• Rhythmic feature: the beat is a strong beat and it is followed by a rest at the
bottom voice and at an intermediate voice ( 3©).

Table 2.1 shows the two corpora which were used in this study. The Bach fugue
corpus includes the 24 fugues of the first book of the Well-Tempered-Clavier by J.-
S. Bach in which cadences have been annotated by Giraud et al. (2015). The Haydn
string quartets corpus includes 42 expositions from movements of J. Haydn string
quartets in sonata form, with cadences annotated by Sears et al. (2017). Even if these
annotated corpora model cadences in the light of a global analysis of the form, we
have used them as a benchmark on our local feature-based detection task. Note that
only a minority of annotated PAC are final in the sense that they are included in the
last four measures of the piece (or of the exposition), which makes their detection
trivial.

As shown in Table 2.1, cadences are rare (less than 2% of the beats) which con-
tributes to make their annotation delicate, in addition to the solid musical expertise
generally required to spot them within musical scores. The limited availability of
cadence expert reference annotation shows how crucial is the high-level feature ap-
proach for this task. By representing beats by expert high-level features, we aim at
helping the model to handle first levels of abstraction and improve its capacity of
assimilating the concept of cadence.

Model explainability We provide in Table 2.2 some statistics of a selected subset of
features, among the total set of 44, and their co-occurrence with cadence annotations
in the two corpora. These statistics aim at confirming (or refuting) the correlation
of theoretical features with cadences, prior to the training of a model. In addition,
these statistics will presumably help the good interpretation of the evaluation re-
sults, highlighting which features contribute the most.

For example, Table 2.2 indicates that strong beats (represented by the feature R-Z-
strong-beat) represent 40% (1920/4739) of the beats included in the fugue corpus, but
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Bach Fugues Haydn string quartets
beats PAC rIAC beats PAC HC
4739 63 24 7173 99 70

R-Z-strong-beat 1920 60∗ / 25 24∗ / 9 3126 98∗ / 43 70∗ / 30

R-Z-sustained-note 2341 14∗ / 31 5 / 11 2521 1∗ / 34 8∗ / 24

R-after-Z-rest-lowest 194 15∗ / 2 13∗ / 0 1130 59∗ / 15 34∗ / 11

Z-in-perfect-triad-or-sus4 2078 62∗ / 27 20∗ / 10 3434 97∗ / 47 55∗ / 33

Z-4-moves-to-3 160 2 / 2 1 / 0 340 2 / 4 11∗ / 3

Y-Z-bass-moves-2nd-Maj 880 0∗ / 11 · / 4 559 0∗ / 7 28∗ / 5

Y-Z-bass-moves-compatible-V-I 512 62∗ / 6 23∗ / 2 578 95∗ / 7 6 / 5

TABLE 2.2: Statistics on the co-occurrence of a selection of features
with manual cadence annotations in the two corpora. The column
beats indicates the number of beats at which the feature returns True.
The following columns indicate the number of co-occurrences of the
feature with a cadence annotation and, in small, this expected number
should the feature be random and uniformly distributed across the
beats (· means 0, and not significant). Significant features therefore

appear in case of large gaps between these two numbers.
(Bigo et al., 2018)

include 95% (63/60) of the PAC beats, which suggests an important, although not
sufficient, contribution of this feature for the task of cadence detection. In contrast,
cadences rarely involve sustained notes, interestingly making this feature negatively
correlated to cadences. As expected, the presence of a rest after the beat (feature
R-after-Z-rest-lowest, illustrated in Figure 2.3 ( 3©)) and a 5 → 1 move in the bottom
voice (feature Y-Z-bass-moves-compatible-V-I, 4© in Figure 2.3) are highly correlated with
the presence of PAC. Contrasting with our intuition, suspended chords (feature Z-
4-moves-to-3 ) were suprisingly rare in the corpus, not correlated with PACs but with
HCs. As another example, the feature Y-Z-bass-2nd-Maj is interestingly positively
correlated with HCs while negatively correlated with PACs.

Evaluation Following the method presented in Section 1.3, a classifier4 is trained
to predict at each beat of the training set whether it includes or not a cadence annota-
tion given the 44 corresponding computed feature values. The results are indicated
in Table 2.3. They show a promising ability of the model to detect PAC although
detecting other types of cadences, such as HC and rIAC appears more challenging.
Statistics on expert features illustrated in Table 2.2, indicate which of them contribute
predominantly to the success of the prediction. For instance, the fifth bass move is
the most contributing feature for the detection of PACs. HCs however, seem to lack
such a characteristic move.

2.3.2 Modeling classical symbolic texture

Musical analysis in the western repertoire often involves in the first place analyzing
melody and harmony in a musical score. In contrast, symbolic texture gathers most
of the remaining facets of the score content. For instance, two accompaniment parts
can follow the same chord progression but with a different texture if notes are played

4A linear SVM (Support Vector Machine) provided the best results as detailed in (Bigo et al., 2018).
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beats ref TP FP FN F1
Haydn quartets corpus PAC 3583 51 42 28 9 0.69

(21 quartets) HC 3583 32 18 73 14 0.29
Bach fugues corpus PAC 2357 36 26 3 10 0.80

(12 fugues) PAC+rIAC 2357 46 30 12 16 0.68

TABLE 2.3: Detection of cadences on the test sets of both corpora
using all features: Number of beats annotated in the reference an-
notation (ref), true positives (TP), false positives (FP), false negatives
(FN), and F1 measure (harmonic mean of the recall and the precision).

(Bigo et al., 2018)

by block (homorhythmic chord), or one by one (arpeggiated). Although intuitive for
the musician, this concept is rarely formalized in comparison to other score aspects
such as harmony. In this research, we define symbolic texture as the organization
of notes, chords and voices within the musical score. Symbolic texture is sometimes
referred as compositional texture. It is clearly distinct from audio texture that commonly
refers to timbre aspects in signal processing.

The PhD work of L. Couturier, which I am co-supervising with F. Levé, aims
at elaborating computational methods and model symbolic texture to facilitate the
use of this abstract feature in both analytical and compositional contexts. The Mas-
ter internship and the first PhD year of L. Couturier led to the elaboration of an
unprecedented syntax dedicated to the description of texture in the classical piano
repertoire (Couturier, Bigo, and Levé, 2022b) as well as a corpus of 9 Mozart piano
movements with texture annotation at each bar and an evaluation of the ability of
a set of 62 high-level descriptors to predict the texture of a musical bar (Couturier,
Bigo, and Levé, 2022a).

A syntax dedicated to classical piano music symbolic texture

The piano sonata excerpt illustrated in Figure 2.1 includes various examples of sym-
bolic textures that are typical of the classical style. The first bar shows an arpeggio
pattern which is played by the two hands in a complementary way, sometimes re-
ferred as call and response (1.a). While the right hand is then playing a melody until
the end of the excerpt, the accompaniment part played by the left hand features
various textures including a repeated chord (1.b), an Alberti bass (1.c) and sparse
chords (1.d).

These textural patterns are frequent and somehow part of a basic vocabulary
of the classical style. They arguably play an essential role in the way we listen,
read, play and compose music. In particular, instrumental exercises often make use
of repeated patterns in a given texture. In the classical repertoire, these textural
patterns are often merged, combined and declined in a variety of ways, making their
formal description and computational modeling challenging in comparison to other
analytical tasks such as harmony analysis. The syntax elaborated in the PhD work
of L. Couturier addresses this challenge by identifying a set of musical principles
of variable abstractness, whose combination can potentially describe any textural
configuration found in the classical piano repertoire.
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• Layers group notes into textural parts mainly based on onset synchrony and
analogous motions. A typical 2-layers configuration would involve a melodic
layer and an accompaniment layer (sometimes described as homophonic). Fugue
forms generally feature more than two layers. The number of distinct layers is
an indicator of diversity in a score excerpt.

• Voices separate simultaneous notes of a same layer. The number of voices is
an indicator of the vertical density in a score excerpt.

• Three possible musical functions enable to attribute a musical role to each
layer: melodic, harmonic and static. These functions are frequently combined.

• Voice relationships enable to indicate that two voices are played in homorhythmy,
parallel or octave motions.

• Characteristic musical figures include various note property including sus-
tain, repetition, sparsity, scales and oscillations.

As mentioned in Section 1.3, describing the evolution of an aspect of the mu-
sical flow, as it is the case with symbolic texture, commonly requires to carefully
choose a time granularity indicating the frequency at which the description needs to
be updated e.g., every millisecond, every beat, every bar, every section, etc. Describ-
ing symbolic texture at each bar was identified as an optimal compromise. On the
one hand, shorter time spans, such as beat frames, would be restrictive for the rep-
resentation of the high level textural concepts previously described. On the other
hand, notating the texture of several consecutive bars by a single annotation might
yield to labels that would be overloaded in text and too approximate regarding the
musical surface. Figure 2.4 illustrates the proposed syntax with the first bars of a
piano sonata of W.A. Mozart. The framed bar has the label 3h[M1/H2h],_ because
it includes 3 homorhythmic voices (3h) that are grouped into two layers. The first
layer has a melodic function and includes one voice (M1) while the second layer has a
harmonic function and includes 2 voices, themselves played in homorhythmy (H2h).
The annotation finally indicates the sparsity of the texture (,_).

The formalization of the syntax in Backus Naur Form as well as the construction
of a bestiary of typical textural configurations representative of the classical style are
detailed in our publication (Couturier, Bigo, and Levé, 2022b).

A dataset of texture annotations

To support computational approaches to symbolic texture modeling, we annotated
with L. Couturier and F. Levé the texture of each bar of 9 movements of Mozart Pi-
ano Sonatas with this syntax, totaling a set of 1164 annotated measures. The selected
pieces were all composed in the end of the year 1774, which presumes reasonable
chances of style consistency and limits the shift of compositional practice that could
be induced by the evolution of piano manufacture. Moreover, these movements
present an interesting diversity in tonality, rhythmic signature and tempo, while
covering a large variety of textures. All those movements are in Sonata Form, which
opens perspectives to pursue research on the links between texture and form as ini-
tiated by Tenkanen and Gualda (2008).
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FIGURE 2.4: First bars of the Presto from Piano Sonata n°2 by
W.A. Mozart (K. 280/189e), annotated with texture labels following

the proposed syntax (Couturier, Bigo, and Levé, 2022b).

The texture annotations were added on the musical score and saved with the web
platform Dezrann. The annotations were reviewed by two musical experts who pos-
sibly provided some feedbacks to the annotations. Each feedback induced a discus-
sion phase until a consensus between the annotator and the reviewer was reached.

The high expressiveness of the syntax facilitates the musical interpretation of
large scale statistics computed on the whole annotation corpus, thus refining our
knowledge on compositional practice of this repertoire by confirming or refuting
empirical hypothesis and discovering unexpected properties. We can observe for
instance that the most common combination in the corpus gathers a melodic layer
(M1) accompanied by a harmony+static layer (HS1) as it is the case in bars 2 to 5 in
Figure 2.1, confirming a common schema involving a right-hand melody accompa-
nied by a left-hand chord realized in a repeated or Alberti bass form. Less expected,
statistics show that the proportion of measures with harmonic layers (H) varies be-
tween annotated movements, notably according to the tempo: this percentage is 26%
higher in slower movements (the second of each full sonata) than in the average of
the others, which presumably opens promising research perspectives linking texture
to style and forms.

Figure 2.5 illustrates a distribution of textural annotations depending on their
diversity (number of layers) and vertical density (number of voices), providing an
original overview of Mozart’s piano texture practice at a high level (voices and lay-
ers). Some regions of the distribution can interestingly be associated with common
musical strategies including standard polyphony (each voice is a distinct layer), ho-
mophony (one melodic layer + one accompaniment layer, see Figure 2.1, measures
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FIGURE 2.5: Distribution of textural configurations of the dataset ac-
cording to their density and diversity

(Couturier, Bigo, and Levé, 2022a).

2-5), monophony (one unique layer including several voices e.g., homorhythmic ca-
dences, see Figure 2.1, last measure) or antiphony, which occasionally occurs when
some layers alternate (e.g., call and response, see Figure 2.1, first bar).

Although the number of layers rarely exceeds 2, this distribution shows that a
systematic separation into two layers, which follows an intuitive organization of the
score content between the two hands of the pianist, would not be sufficiently repre-
sentative of the corpus. This distribution is although presumed to be strongly related
to the corpus style. For instance, multiple voice inventions, as found in the repertoire
of J.-S. Bach, would presumably increase the proportion of textural configurations in
the upper part of the graph, where the number of layers exceeds 2. Such reflections
open the door to promising texture studies extended to other musical styles.

Generalizing the idea of organizing textural configurations in a dedicated space,
which is partially experimented in the representation of Figure 2.5, opens perspec-
tives to study texture evolution across a piece as a trajectory that could hopefully
serve style and form analysis.

Towards texture prediction

In spite of a formal description provided by the syntax we proposed in (Couturier,
Bigo, and Levé, 2022b), annotating symbolic texture showed to frequently involve
ambiguous cases for the reviewer. This challenge motivates the design and eval-
uation of algorithms to automatically predict texture. In this part of the work of
L. Couturier, a set of 62 score features is proposed to train a machine-learning model
for texture prediction, following the general method presented in 1.3. Selected fea-
tures concern pitches, onsets and slices of notes. They are systematically computed
at each bar of musical scores. Using the annotated dataset presented in Section 2.3.2,
a logistic regression model was trained to predict the annotation of a bar represented
by its set of features. Among other findings, the results (Couturier, Bigo, and Levé,
2022a) show that the melodic function is easier to detect than the harmonic and static
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functions. Homorhythmy, including parallel and octave motions, also provides fair
detection results. The prediction of rare elements, such as oscillations, could be im-
proved by increasing the size of annotated data and therefore the efficiency of the
training. On the other hand, scale motives showed to require a more consistent for-
malization in the syntax as they happen to describe various possible behaviors.

2.3.3 Other contributions

I am briefly presenting here additional research on which I was involved with col-
leagues of the Algomus team. The first two topics are part of a long-term and wide
research frame of the Algomus team focusing on the modeling of the Sonata Form.
The first task focuses on section boundary prediction (Bigo et al., 2017; Allegraud
et al., 2019) and the second one on Medial Caesura detection (Feisthauer, Bigo, and
Giraud, 2019), the latter being part of L. Feisthauer’s PhD. Although not detailed in
this manuscript, L. Feisthauer’s PhD also included a substantial work on modulation
modeling in the classical style (Feisthauer et al., 2020).

Sonata form: section boundary identification

The Sonata Form refers to a musical structure that has been widely used in the clas-
sical repertoire since the middle of the 18th century. Musical pieces in the sonata
form include three successive large-scale parts respectively called Exposition, Devel-
opment and Recapitulation that include a characteristic succession of tonalities. A Pri-
mary theme, a Transition, a Secondary theme and a Conclusion are consecutively used
in both the Exposition and the Recapitulation. Importantly, the secondary theme
of the Exposition is played in another key, frequently "at the dominant", meaning
that the keys of the primary and secondary theme are distant from a fifth interval.
In contrast, both themes are played in the same key in the Recapitulation. A half-
cadence, called Medial Caesura, generally takes place right before the beginning of
the secondary theme (Hepokoski and Darcy, 2006). Figure 2.6 illustrates the succes-
sive sonata form’s sections annotated on the score of a string quartet movement by
W.A. Mozart.

Following the method presented in Section 1.3, a set of high-level score features
was selected for the task of section boundary detection. The features alternatively
combine melody, harmony, and rhythm aspects. Some of them are strongly specific
to structure in the classical style. For instance, the triple hammer blow consists in a
flagrant repetition of a chord, generally the resolution chord of a cadence, to empha-
size the end of a section. The last bar in Figure 2.1 and the second bar in Figure 2.7
both include a triple hammer blow. Another characteristic feature is the rhythm break
which aims at detecting the interruption of repetitive rhythms that consist in at least
15 consecutive notes with same duration, which is likely to occur at the end of a
Transition section, right before the Medial Caesura. Figure 2.7 illustrates the detec-
tion of these features in an excerpt located at the Medial Caesura of a string quartet
movement exposition.

These features were used as observations of a Hidden Markov Model predicting
boundary locations. Transition and emission probabilities were hard coded from
theory-driven intuitions in a preliminary version of the model (Bigo et al., 2017) and
learned on an annotated corpus in a more extended version (Allegraud et al., 2019).
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FIGURE 2.6: Andante con moto of the String Quartet #16 in E[ Major,
K. 428, 2nd movement from W.A. Mozart following a sonata form.
Following notations of Hepokoski and Darcy (2006), the primary
themes (P/P’) are followed by transitions (TR/TR’), ended with Me-
dial Caesuras (MC/MC’) – they are here Half Cadences (HC) in the
main tonality (I). In the exposition, the secondary theme (S) and the
conclusion (C) are here in the tonality of the dominant (V, B[ major).
In the recapitulation, both S’ and C’ come back to the main tonal-
ity. Between the exposition and the recapitulation, the development
(Dev) moves to other keys and is concluded by a re-transition (RT)
focusing on the dominant of the primary key (Allegraud et al., 2019).
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FIGURE 2.7: First medial caesura (MC) in the first movement of the
String Quartet no. 4 in C major by W.A. Mozart (K. 157), measures 29
to 32. The MC ends the transition (TR) and is before the beginning
of the secondary theme (S). Several high-level features are computed
within this region: the thematic pattern S (prematurely detected as it
is supposed to begin after the MC), tonality regions (A and a wrong
additional one O), a chromatic upward bass movement # and a full
rest r. Two authentic cadences AC are also wrongly detected at the
beginning of the secondary theme. A triple hammer blow (ha) charac-

teristic of the medial caesura is also detected (Bigo et al., 2017).

This last work publicly released our annotation dataset of Sonata Form structures
including 32 movements of string quartets by W.A. Mozart.

Figure 2.8 compares predicted and reference structures for six pieces of the dataset,
highlighting abilities of the model to predict section boundaries on simple cases (as
K. 172.2) but also important difficulties in more challenging pieces (K. 465.1). The
limits of the model are presumed to be caused mostly by the small size of the cor-
pus, exacerbated by an important diversity of section combinations in sonata forms
induced for instance by occasional inclusion of Introduction and Coda sections.

Sonata form: Medial Caesura detection

As a key component of the Sonata Form, the Medial Caesura has been the topic of
numerous musicological studies aiming at exploring its nature and function. Hep-
okoski and Darcy (1997) explain that the Medial Caesura closes the first part of the
Exposition, concluding a process of energy gain initiated during the Transition sec-
tion, and makes the second part available thanks to that energy accumulated.

The Medial Caesura modeling is particularly challenging given its musical ab-
stractness5. As part of his PhD, L. Feisthauer proposed and implemented a set of
13 beat high-level theory-driven features essentially relating to pitch and rhythm for
the detection of Medial Caesura (Feisthauer, Bigo, and Giraud, 2019). These features
were used to describe the current beat and its short-surrounding, and eventually

5The Medial Caesura is probably the most abstract concept that was attempted to be modelled in
the Algomus team.
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K172.2
P MC S C Dev P’ MC’ S’ C’Coda

P MC S Dev p P’ MC’ S’

K428.1
P TR MC S C Dev P’ TR’ MC’ S’ C’

PTRC TC d Dev RTP’TR’ C’ TC’Coda

K428.2
P TRMC S C Dev RT P’ TR’MC’ S’ C’

P MC S C Dev RT P’ TR’ C’ Coda

K458.1
P TR C Dev RTp P’ TR’ C’ Coda

P MC S C Dev RT P’ MC’ S’ Coda

K465.1
Intro P TRMC S C TC Dev RT P’ TR’MC’S’ C’ TC’ Coda

PTRCd Dev P’TR’C’Coda

K465.4
P TRMCS C TC Dev RT P’ TR’MC’S’ C’ TC’ Coda

P TRMC S C d Dev P’ TR’MC’ S’ C’ TC’ Coda

FIGURE 2.8: Comparison between the reference analysis (top) and the
predicted analysis (bottom) on six string quartets movements

(Allegraud et al., 2019).

train a recurrent neural network (Long-Short-Term-Memory) for the task of predict-
ing the occurrence of a Medial Caesura at each beat.

In contrast with the cadence detection task described in Section 2.3.1, only fea-
tures describing the present beat were selected here. For this reason, it was chosen
to use a recurrent model to capture the progressing aspect of the Medial Caesura.
An LSTM was trained in a Leave-One-Piece-Out validation framework on a corpus of
27 two-part expositions of string quartets from W.A. Mozart included in the corpus
used for Sonata Form detection described in Section 2.3.3.

Figure 2.9 displays the probability of the successive beats of four pieces to be a
Medial Caesura as estimated by the neural network. Probability curves facilitate the
comparison of the ambiguity of the pieces for the Medial Caesura detection task,
and provide a rate of wrongness for prediction mistakes.

2.4 Impacts

The research of this chapter, and more generally of the Algomus team, is probably
located in the most musicological part of the MIR community. While a number of
MIR models dedicated to the analysis of classical music focus on a set of general
tasks including key detection, harmony analysis, or composer classification, a large
part of our work aim at modeling slightly more specific musical phenomena such
as symbolic textures, cadences, and, as a more extreme case, medial caesuras. One
hope regarding this specific positioning is to raise musicologists interest in com-
putational approaches, in particular the music analysis community who still seems
under-represented in the MIR community.

As mentioned in Section 1.2.1, predictive algorithms as those presented in this
chapter have few chances to be directly used by musicologists. As proposed by Dahlig-
Turek et al. (2012), this might be partly explained by shortcomings often characteriz-
ing such tools including their specificity to a certain repertoire or approach, their lack
of robustness and flexibility, their imperfect user interface or the complexity of their
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FIGURE 2.9: Estimated probability of Medial Caesura in four pieces.
The probability is computed for each beat of the score. On the top:
two correct predictions, including a particularly unambiguous piece
(right). On the bottom: two wrong predictions, the right one being

more frankly wrong (Feisthauer, Bigo, and Giraud, 2019).

output. Nevertheless, the elaboration of these tools in close collaboration with the
musicological community contributes to diversify viewpoints to discuss common in-
terests. Favoring explainable models as described in Section 1.3, allowing statistical
observations such as those on cadences illustrated in Table 2.2, is a way to foster such
interdisciplinary collaborations. Although our publications on the topic still haven’t
been significantly cited in musicological publications to our knowledge, we aim at
maximizing opportunities of research sharing with musicologists. On the topic of
harmony, a part of the PhD work of L. Feisthauer has for instance been presented at
a musicology conference dedicated to the 300th anniversary of J.-P. Rameau’s Traité
de l’harmonie6 to provide a computational point of view on research in this topic. The
PhD work of L. Couturier on texture enables to pursue a collaboration of the Algo-
mus team with French musicologist N. Hérold, in the same way the Algomus team
did in the past with M. Rigaudière. The research on guitar tablature presented in
Section 3 is also done in close collaboration with musicologist B. Navarret. Bridg-
ing this gap is however challenging due to a number of notable differences between
our communities. For instance, methodologies, problem descriptions and the fre-
quent quest of generalizing models by computer scientists might appear reductive
and over-simplified for musicologists who frequently have more subtle knowledge
on particular cases of the repertoire.

The interest brought by our results seems however more visible in the MIR com-
munity in which our work on cadence detection has lately been referred as the state

6https://www.iremus.cnrs.fr/fr/evenements/1722-2022-trois-siecles-du-traite\-de-
jean-philippe-rameau-la-musique-science-devant-la

https://www.iremus.cnrs.fr/fr/evenements/1722-2022-trois-siecles-du-traite\-de-jean-philippe-rameau-la-musique-science-devant-la
https://www.iremus.cnrs.fr/fr/evenements/1722-2022-trois-siecles-du-traite\-de-jean-philippe-rameau-la-musique-science-devant-la
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of the art by Karystinaios and Widmer (2022). Among other citations, this work is
also mentioned by Hentschel, Neuwirth, and Rohrmeier (2021) as a motivation for
the building of consistent corpora dedicated to the modeling of high-level compo-
nents of the classical style.

Although part of a more long-term vision, computational models might finally
contribute to music pedagogy if they are embedded within digital score edition or
visualization software. The Dezrann platform for instance aims in the future to pro-
vide experimental models to its users for specific tasks such as cadence detection on
any uploaded musical score. Moreover, the idea of systematically describing musi-
cal score regions (beats, bars, sections) with high-level features potentially facilitates
the search of specific musical excerpts in a repertoire, respecting a precise set of con-
straints intended to illustrate musical situations in a pedagogical context.

2.5 Perspectives

Most of my research perspectives on computational classical music analysis are linked
to the modeling of texture in the frame of the PhD of L. Couturier that I am co-
supervising with F. Levé. This project will include the identification of methods to
organize distinct symbolic textures in a topological space based on their similarity.
Possible approaches to estimate texture distance include text distances between tex-
ture labels. Texture distances will also be studied empirically by conducting percep-
tive listening tests asking human subjects to estimate perceived distances between
musical examples featuring representative textures. We also plan to evaluate ge-
ometric distances between explicit feature vectors or latent vectors computed by
unsupervised models.

The research presented in this section are limited to supervised machine learn-
ing experiments in which a model is trained thanks to a set of expert reference
knowledge. In contrast, unsupervised machine learning approaches do not require
any expert annotations, and try to model abstract knowledge from unlabeled data.
While presumably more challenging to model abstract phenomena, unsupervised
approaches open the perspective of modeling the classical style in a more generic
way with the potential discovery of essential stylistic patterns less formalized than
essential component of music theory such as cadences. This seems particularly true
for polymorphic features such as texture whose exhaustive formalization is compli-
cated by endless combination possibilities. The modeling of texture with unsuper-
vised approaches is therefore an essential perspective of this work.

Textural spaces can be used to study the evolution of the texture of a musical
piece as a trajectory, which would bring an original approach to model musical
style. The work of L. Couturier also intends to bring contributions in the field of
style transfer in which a musical sequence is transformed to fit with the musical
style of another one (Cífka, Şimşekli, and Richard, 2020). Being a major compo-
nent of musical style, the explicit modeling of symbolic texture is felt to potentially
bring significant improvement in this field. Future works in texture will also involve
methods of music generation guided by texture scenarios, which seems to have been
approached only with very basic textural descriptors to date (Makris, Agres, and
Herremans, 2021).
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The predominant use of deep neural networks in symbolic MIR tasks nowadays
also encourages us to study the ability of these models to model textures across their
successive layers. The field of image processing appears as a promising source of
inspiration and analogies for this task given the ability of convolutional networks
to model visual concepts with progressive levels of abstractions (pixels, textures,
shapes, objects, etc.).

We hope that modeling musical texture could ultimately help larger scale tasks in
music analysis including structure detection. The Sonata Form modeling described
in Section 2.3.3 could indeed be improved by adding some textural features that are
felt to be highly informative regarding changes of sections as foreseen by Tenkanen
and Gualda (2008). Texture modeling could probably also help more general tasks
such as harmony analysis. For short-term phenomena such as harmony however,
our texture modeling approach would require to be more modular regarding time
granularity, as the model presented in Section 2.3.2 only supports texture modeling
at the level of a score bar. We also believe this work can bring intuitions far beyond
the frame of the classical style. While the analysis of harmony is often restricted to
Western tonal music, textural concepts are prone to describe a much wider range
of musical cultures and styles. The Section 3.3.5 describes some research aiming at
imitating the texture of rhythm guitar sections in the modern popular style, which
will hopefully benefit from findings in classical piano texture modeling.
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Chapter 3

Assisting music composition:
modeling the language of guitar
tablatures

The guitar is today one of the most played instruments in the world (Trades, 2021)
with remarkably diversified practices and repertoires. Many guitarists, beginners
or experts, transcribe musical ideas by writing tablatures. Tablatures are a specific
type of musical score that include gesture annotations specific to the instrument.
Guitar tablatures in particular, indicate the string and the fret at which a note must
be played, as well as specific playing techniques enabled by the instrument such as
bend notes. Figure 3.1 illustrates a guitar score extract in both standard notation (top)
and tablature notation (bottom).

This chapter describes research around guitar tablature modeling, motivated by
the elaboration of computational tools to assist the composition of guitar music in
musical styles that can be grouped under the general term of modern popular mu-
sic. This project has been initiated in 2017 when the Algomus team met the French
company Arobas Music, which edits the tablature notation software Guitar Pro and
maintains the tablature corpus MySongBook. This collaboration has led to three con-
ference articles to date. Since October 2022, I am coordinating the 4-year ANR JCJC
TABASCO project on computer-assisted tablature composition. Notably, this project
opens a close collaboration with musicologist B. Navarret (IReMUS, Sorbonne Uni-
versité), specialist in the field of guitar practice.

I will first present some essential components of guitar tablatures, trying to high-
light how they contribute to associate guitar music in the modern popular style with
a specific kind of language. After reviewing some contributions in the area of gui-
tar music processing, I will present some of our own contributions as well as future
directions mostly formalized in the TABASCO project proposal.

3.1 Elements of language in guitar scores

This section describes two specific aspects of guitar practice that are assumed to
contribute to establish the language of the modern popular style. We will first focus
on guitar music notation, and more specifically the predisposition of the tablature
system to transcribe gestures preformed by the guitarist. We will then highlight the
ability of the guitar to play various musical functions within a modern popular or-
chestral formation.
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FIGURE 3.1: Score excerpt of a guitar solo from the song Another brick
in the wall (Pink-Floyd). The top part is a standard notation. The bot-
tom part is a tablature notation indicating string/fret combinations
and some playing techniques. Playing techniques are, from left to
right, a full bend, a Pull-Off, a slide, a left-hand vibrato and a Hammer-

On. Tablature rendered with Guitar Pro.

3.1.1 Gesture annotations

As with many stringed instruments, guitar scores commonly include a standard
score notation upon a tablature notation as illustrated in Figure 3.1. Standard no-
tation represents musical content in terms of notes and chords. It can potentially be
used to notate music for different types of instruments. In contrast, tablature no-
tations are generally specific to one given instrument. Navarret (2013) argues that
guitar tablatures are initially intended to transcribe performance gestures. Gesture an-
notations in guitar include finger positions, indicated by string+fret combinations, as
well as a variety of playing techniques made possible by the making of the instru-
ment.

• Position annotations1 Guitar tablatures include horizontal lines representing
the strings of the instrument. Numbers displayed on the lines indicate the
fret, which is a discretized level on the fretboard at which the string must be
pressed. For example, the first note of the excerpt in Figure 3.1 is a G7 which
is played by pressing the fourth string at the twelfth fret. Given the tuning
of the guitar, string/fret combinations enable to deduce the pitches they are
producing. The reverse deduction is however not possible as a same pitch can
generally be produced with several string/fret combinations. For instance, the
G7 pitch could have also been produced at the height 8th fret of the fifth string.

• Playing techniques annotations In addition to fretboard positions, the tabla-
ture at the bottom of Figure 3.1 includes a number of playing techniques annota-
tions. Playing techniques annotations indicate specific gestures on the guitar,
which contribute to improve the expressiveness of the performance. They in-
clude left-hand techniques such as bends that indicate that the string is progres-
sively pulled, inducing a continuous pitch shifting, as well as other techniques
such as hammer-on/pull-off, slides, let-ring and left-hand vibratos. They also in-
clude the more rarely studied right-hand techniques such as palm-mutes, right-
hand vibratos, artificial harmonics which frequently appear in modern pop/rock
tablatures.

1Position annotations are often ambiguously referred to as fingering annotations. We prefer however
the term position annotation to avoid ambiguity as fingering commonly refers to finger choice, including
for other instruments like the piano.
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(A) Extract from a rhythm
guitar section from Space

Oddity (David Bowie)

(B) Extract from a lead
guitar section (part of a
solo) from Another Brick
In The Wall (Pink Floyd)

(C) Extract from Sultans
of Swing (Dire Straits)
combining chords and

melody.

(D) Extract from Back In
Black (AC/DC) alternat-
ing chords and melody.

FIGURE 3.2: Four tablature extracts illustrating various degree of the
rhythm guitar function. Tablatures rendered with Guitar Pro.

Notating gestures has two essential conveniences. From a transcription perspec-
tive, tablatures convey more stylistic information than the score content alone. The
choice of fretboard positions as well as the use of playing techniques indeed strongly
contribute to the style of a guitar part (McVicar, Fukayama, and Goto, 2015). From a
performance perspective, although sight-reading tablatures requires a certain famil-
iarity with the physical instrument, it is generally more accessible than a score as it
requires less knowledge in music notation and theory. It is possible that this prop-
erty contributes to encourage some music beginners to orientate towards the choice
of the guitar.

3.1.2 Guitar playing functions in modern popular music

Similarly to other instruments like the piano, a guitar part in a modern popular
music ensemble, especially in the pop/rock style, can potentially be associated with
various musical functions, or roles, in a song. Most of the time, these functions can
be gathered within two broad categories being accompaniment (commonly called
rhythm guitar) and melody (commonly called lead guitar). Figure 3.2a illustrates a
typical rhythm guitar part and Figure 3.2b a typical lead part. Interestingly, it is
even common to distinguish two guitarists in a band, especially in rock bands, as the
lead guitarist and the rhythm guitarist. Although not central in our research and less
frequent in the context of a pop/rock ensemble, it is worth noting that the guitar,
as the piano, can simultaneously perform accompaniment and melody. While the
piano will typically split the two functions over left hand and right hand, the guitar
will generally use a specific playing technique called finger picking2.

2Jazz guitar includes some other practices to play both chords and melodies, including fast alterna-
tions between both functions.
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A first level for the description of the function of a guitar section is to estimate if it
is thought to be perceived in the background or in the foreground of the song. Accom-
paniment parts will generally fit the first category as they often aim at supporting a
main musical part like a singing part or an instrumental solo. Melodic parts are in
turn generally thought to be perceived in the foreground. However, it is not uncom-
mon for a lead guitarist to play a background melody, possibly improvised, during
singing sections3.

Rhythm guitar sections in the modern popular repertoire mostly consist in sec-
tions realizing a chord sequence4, generally in a repetitive way. In contrast, lead gui-
tar appears to be less well-defined as it can be alternately associated with solo parts,
as in Figure 3.2b, riffs, licks, or diverse melodic parts. In addition to these preva-
lent categories, guitar tablatures can possibly include arrangement parts of diverse
forms, which could hardly be classified in one of the previous categories. Figure 3.2c
illustrates an ambiguous case where the guitar plays chords with a texture which is
presumably more common in lead guitar parts than in rhythm guitar parts. Fig-
ure 3.2d illustrates a guitar part that includes three power chords5 followed by a short
melodic pattern which is played at the transition between two occurrences of the
chord sequence. Sections 3.3.4 and 3.3.5 focus on tablature texture modeling with
applications on detection and imitation of rhythm guitar sections.

3.1.3 Guitar tablatures and composition

The principle of guitar tablature composition in the modern popular style could al-
most be considered as a nonsense. Indeed, Navarret (2013) outlines that for most
modern popular music, the score is not a prerequisite for the creation, but rather a
document resulting from the creation, essentially used for memorization and trans-
mission. Composition in modern popular music seems indeed to mostly occur with
experimental instrumental performance, but with limited use of music notation (Deruty
et al., 2022). This contrasts with classical music composition in which score notation
presumably occupies a much more central place, although classical composers also
occasionally use higher-level representations such as sketches or blocs.

Nevertheless, the research described in this chapter is based on the hypothesis
that the technological functionalities offered by modern music notation software, in-
cluding playback and instruments/sound effects, commonly incite the composer to
perform substantial modifications at the transcription stage. We therefore believe
that the access to a judicious selection of AI-based functionalities embedded within
music notation software can potentially contribute to renew composer’s habits and
shift some parts of the composition process at the notation stage. It is worth noting
that similarly, the sophisticated functionalities of recent music production software,
also known as digital audio workstations, now play a central role regarding the de-
cisions involved in the production of modern popular music (Bell, 2018). A part of
the research described in this chapter aims to encourage an analogous phenomenon

3Examples of this behavior include the verses of the song What’s Up (4 Non Blondes) or the bridge
of the song Cryin’ (Aerosmith).

4In some cases however, the rhythm guitar can include a repetitive melodic line, as in the verses of
Always on the run from L. Kravitz or Give It Away from Red Hot Chili Peppers, which both feature a
single chord.

5power chords refer to chords limited to a tonic and a fifth. They are widely used in rock and metal
styles, generally with distortion/overdrive sound effects.
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at the level of the guitar tablature. For instance, composition assisted functionalities
can propose alternative content on selected regions of the score, following recent in-
painting methods (Hadjeres and Crestel, 2021). Such functionalities could also help
the composer in completing its composition on aspects he feels less skilled, for in-
stance an accompaniment part played by an instrument for which he feels unskilled.

The question of user interface is naturally crucial to reach composers. The elab-
oration of composition functionalities in notation software should therefore be ad-
dressed with close consideration of recent studies on the real use of algorithmic tools
by composers (Deruty et al., 2022; Kayacik et al., 2019).

3.2 Computational processing of guitar tablatures

Most research involving computational processing of guitar tablatures fall into three
categories: position prediction, style analysis and content generation.

The position prediction task, also referred as to automatic fingering or score-
to-tab, results from the fact that a same note can generally be played at multiple
locations on the guitar fretboard as mentioned in Section 3.1.1. This task therefore
consists in estimating a string/fret combination for each note of a score in order to
optimize its global playability. The fingering problem has been approached with
a variety of methods including HMM from audio signal (Barbancho et al., 2011)
and symbolic scores (Hori and Sagayama, 2016), and visual detection (Burns and
Wanderley, 2006).

Computational guitar tablature analysis include the detection in audio record-
ings of playing techniques described in Section 3.1.1 (bends, etc.) (Reboursière et al.,
2012; Chen, Su, Yang, et al., 2015). Analysis of audio guitar recordings also include
automatic transcription of tablatures (Xi et al., 2018; Wiggins and Kim, 2019) based
on the training of convolutional neural networks on guitar recording spectrograms,
which jointly tackle pitch and fingering estimation. Computational analysis of sym-
bolic tablatures also include guitarist style modeling with Markov models (Das,
Kaneshiro, and Collins, 2018) or with directed graphs (Ferretti, 2016). Our work de-
scribed in Section 3.3 includes a corpus study on fretboard position (Cournut et al.,
2021), as well as a method for the identification of rhythm guitar sections (Régnier,
Martin, and Bigo, 2021).

Guitar tablature generation has been approached with various methods includ-
ing HMMs to generate guitar arrangements from audio polyphonic music (Ariga,
Fukayama, and Goto, 2017), integer programming to generate blues solos (Cunha,
Subramanian, and Herremans, 2018), and transformer neural networks to gener-
ate fingerpicking tablatures (Chen et al., 2020). Guitar tablature generation has also
been limited to rhythm guitar and lead guitar (McVicar, Fukayama, and Goto, 2014b;
McVicar, Fukayama, and Goto, 2014a) with probabilistic methods.
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3.3 Contributions

3.3.1 Industrial collaboration with Arobas Music

My research in computational tablature modeling take place in the framework of
an industrial collaboration with the French company Arobas Music based in Lille.
Arobas Music produces the tablature edition software Guitar Pro6 which is used by
more than 300 000 users around the world. The native Guitar Pro file format (*.gp)
has become a standard which is nowadays readable by most tablature software.

In addition to the development of Guitar Pro, Arobas Music owns the tablature
corpus MySongBook which includes more than 2500 songs, mostly in the modern
popular style, all transcribed by professional musicians, resulting in an unprece-
dented high quality. The corpus includes pieces in the pop/rock, metal, classical,
and jazz styles. These pieces have been selected depending on their estimated pop-
ularity within the guitar practice community. Although heterogeneous in style, this
selection is therefore supposed to reasonably reflect a large part of western guitar
practice.

The collaboration between Arobas Music and Algomus began in 2017 after the
participation of the company to an industrial panel discussion at the French con-
ference Journée d’Informatique Musicale which was organized by Algomus in Amiens
and for which I was a co-chair of the organization committee. In addition to the
geographical proximity between the two teams, preliminary discussions enabled to
highlight a number of common scientific and musical reflections opening the door to
promising collaborations. I strongly believe that a number of feasible MIR research
could potentially reach to innovative improvements of tablature software such as
Guitar Pro with a high impact on their user community. These include methods
to assist the notation, composition, learning, import, arrangement and playback of
tablatures.

Although the MySongBook corpus is not be publicly released, Arobas Music pro-
vides to the Algomus team exclusive access to the dataset and allows the publication
of findings based on it, as well as high-level representations computed from the data
that can be reused in MIR research by other teams working on guitar tablature pro-
cessing. Alternatively, the publicly released DadaGP corpus (Sarmento et al., 2021)
includes 25 000 songs in the .gp format, resulting from diverse contributions of the
guitarist community. Although much larger, this corpus includes tablatures tran-
scribed with a much lower quality.

The research done so far with the MySongBook corpus has resulted in the model-
ing of musical knowledge at different abstraction levels. Section 3.3.2 details the de-
velopment of vector representations, referred to as encodings, to manipulate .gp tab-
latures at a low level and facilitate their processing by machine learning models. Sec-
tion 3.3.3 presents results of a statistical study of the corpus focusing on string/fret
positions occurrences across different styles. Section 3.3.4 presents a method for the
automatic identification of the musical function of a tablature excerpt. Section 3.3.5
presents ongoing works on imitation of tablature texture, intended to assist rhythm
guitar composition. Although not directly related to composition, the first works all
constitute building blocks on which the latest is built on.

6https://www.guitar-pro.com/

https://www.guitar-pro.com/
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FIGURE 3.3: Two guitar positions (left) with their tablature notation
(middle) and their encodings (right) (Cournut et al., 2020).

FIGURE 3.4: Token encoding of guitar tablature proposed by Chen
et al. (2020).

3.3.2 Tablature encodings

This section describes the work done by J. Cournut during his internship followed
by a three months contract, that I co-supervised with M. Giraud and which reached
to two publications (Cournut et al., 2020; Cournut et al., 2021).

Aiming to facilitate the processing of symbolic tablatures in the .gp format, the
first achievement in this project was the implementation of a music21 parser trans-
forming a .gp format tablature, structurally equivalent to XML, into a well-formed
music21 python object. Several encoding methods were also elaborated for the sys-
tematic representation of music21 tablatures as binary vectors compatible with ma-
chine learning algorithms. In the context of machine learning experiments, the mu-
sical flow is indeed commonly encoded as sequences of binary vectors, which tran-
scribe which pitches are played at the successive time steps of the musical score as
reviewed by Briot, Hadjeres, and Pachet (2019). In addition to usual note informa-
tion such as pitch and duration, tablatures require the encoding of gesture informa-
tion described in Section 3.1.1. Figure 3.3 illustrates three encodings of two common
guitar positions. For the sake of clarity, fret positions are indicated with their dec-
imal values, although the real vectors only include binary values (Cournut et al.,
2020).

• the Pitch encoding transcribes at a given time step the set of sounding pitches
among the 49 pitches available on a standard guitar fretboard. It is equivalent
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to the piano-roll representation, which is generic to any instrument and does
not include any position information.

• the StringFret encoding transcribes position information with 150 values, as-
sociated with the complete set of string/fret combinations on a standard gui-
tar. Note that the Pitch encoding can be deduced from this one, assuming the
tuning of the guitar is known.

• the RelativeStingFret encoding transcribes position information relative to
an estimated level of the hand on the fretboard. This encoding aims at facilitat-
ing the identification of translated positions, and encouraging the learning of
musical knowledge up to transposition. It includes 25 binary values to encode
the level of the hand and 6× (s + 1) values to encode for each of the 6 strings,
1 open string position and s relative positions that are assumed to be accessi-
ble without shifting the level of the hand on the fretboard. The parameter s is
called the HandSpan and is commonly given the value 5 given that a normal
hand is unlikely to cover more than this number of adjacent frets on a standard
guitar.

The StringFret and RelativeStingFret encodings possibly include six addi-
tional values to specify if a sounding string is attacked or held from the past. Hold
values have indeed shown to play an essential role in the modeling of music with
neural networks (Hadjeres, Pachet, and Nielsen, 2017).

On tablature token encodings As it will be further detailed in Chapter 4, sequence
to sequence neural networks such as the transformer have gained an important pop-
ularity in symbolic MIR in the last years. These models generally work with a repre-
sentation of music as sequences of atomic values called tokens, similarly to sequence
of words in text. Figure 3.4 illustrates a token representation of guitar tablature data
proposed by Chen et al. (2020). Technically, tokens are fed to neural networks as
one-hot vectors, meaning vectors having one unique value at 1 and the others at 0.
One-hot representations are associated with a dictionary and allow the encoding of
sets of possibly unrelated elements, which contrasts with the previous encodings.
As illustrated on Figure 3.4, encoding a given fretboard position will typically re-
quire several consecutive tokens, including one for the string and one for the fret.
This method consequently produces longer sequences than the previous many-hot
encodings, which can encode in one unique vector a whole instantaneous position
on the guitar fretboard. Sarmento et al. (2021) have also proposed a tablature dedi-
cated token representation, which can additionally encode other type of instrumen-
tal tracks including drums and bass.

3.3.3 MySongBook statistics

The parsing and encoding tools described in the previous section facilitate the com-
putation of corpus statistics. Figure 3.5 displays the proportions of fretboard posi-
tions within the whole MySongBook corpus, highlighting the predominant use of
the lowest frets (73% on open strings or on fret ≤ 5). Figure 3.6 illustrates the most
common chord positions, using at least four strings, of the corpus. The top line
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FIGURE 3.5: Occurrence of string/fret combinations across the whole
MySongBook corpus (Cournut et al., 2021).
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FIGURE 3.6: Most frequent instantaneous positions implying at least
four strings, encoded with RelativeStringFret (top, absolute positions)
and RelativeStringFret? (bottom, relative positions, with omission of
the RootFret value), with their number of occurrences and the ratio
of their occurrences in the corpus. Positions notated with a star, like
A*, are “sub-chords”, meaning that at least one string could be added
(generally the top string) to get another usual position (Cournut et al.,

2021).

shows exact positions while the bottom line shows relative positions, possibly per-
formed at any level of the fretboard using barre chords. These statistics enable to
compare how the different positions tend to be translated across the corpus. They
also show the surprising prominence of some "sub-chords", illustrating some aspects
of guitar practice in this repertoire (Cournut et al., 2021).

Although these statistics provide global insights on western guitar practice, they
nevertheless require to be computed on separated sub-corpora for the study of dis-
tinct musical styles. Figure 3.7 compares the composition of chords in different
styles. The figure highlights for instance the predominance of fifth chords, also
called power chords, in the metal style as well as the rarity of these chords in the
classical style ("5" on the top line of the figure).

These statistics are further discussed and interpreted in our article (Cournut et
al., 2021).
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FIGURE 3.7: Frequencies of chord types in several genres, considering
chords with 2 or 3 strings (top), or with 4, 5, or 6 strings (bottom),
and gathered into families: major, minor, thirds and sixths, chords
without thirds. After each genre is displayed the number of pieces in
that genre. To allow to compare more precisely less frequent chords,
data over 20% concerning the most frequent chord are split on several

lines (Cournut et al., 2021).

3.3.4 Playing function prediction

As mentioned in Section 3.1.2, the guitar instrument can play considerably different
musical functions, especially within large instrumental formations in which the dif-
ferent musical layers, such as melody, harmony, bass, rhythm, are commonly split
among the instruments. Most common functions are rhythm guitar and lead guitar
although a substantial part of the pop/rock repertoire can not unambiguously be
classified within one of these two categories as illustrated in Figures 3.2c and 3.2d.

Predicting playing function in tablatures potentially allows the identification of
consistent sub-datasets limited to one specific musical function. While a general tab-
lature generation model would typically benefit from being trained on a mix dataset
in order to potentially generate tablature with any kind of function, a model in-
tended to only assist a specific sub-task of the composition process would in turn
benefit from being trained only on the type of data involved in this task. For in-
stance, it is probably not desirable to train a model dedicated to rhythm guitar com-
position on lead guitar data and vice-versa. Predicting tablature playing function
is therefore considered as a key task to elaborate machine-learning tools to assist
punctual composition situations. The rest of this section presents a method for the
specific task of rhythm guitar detection, that was elaborated by D. Régnier during
its Master internship that I supervised, and which reached to a publication (Régnier,
Martin, and Bigo, 2021).

Following the methodology proposed in Section 1.3, a set of 31 high-level textural
features computed at the bar level have been identified as being potentially corre-
lated with the musical function played by the guitar. As investigated in Section 2.3.2
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note features chord features tab features
# notes 7 · 102 chords∗ 2 · 103 min fret 2 · 103

single notes∗ 1 · 103 # 2-chords 1 · 101 max fret 2 · 103

min pitch 3 · 103 # 3-chords 3 · 102 mean fret 2 · 103

max pitch 8 · 102 # 4-chords 5 · 102 min string 3 · 103

mean pitch 2 · 103 # 5-chords 2 · 102 max string 4 · 100

pitch ambitus 1 · 103 # 6-chords 9 · 101 mean string 7 · 102

pitch variety 2 · 103 chord variety 9 · 102 l-r(s)∗ 1 · 102

min interval 3 · 101 m/M triad∗ 5 · 102 l-r (100%)∗ 1 · 102

max interval 1 · 10−1 fifth interval∗ 1 · 102 w.b(s)∗ 6 · 100

interval var 2 · 102 bend(s)∗ 2 · 103

duration var 1 · 102 l-h vibr(s)∗ 8 · 102

TABLE 3.1: Features describing tablature bars for the rhythm guitar
detection task. Binary features are indicated with a ∗. The importance
of each feature in the dataset is indicated by its ANOVA F-value (Rég-

nier, Martin, and Bigo, 2021).

with the classical piano repertoire, the texture of a score region results from several
musical features including rhythmic patterns, note density, diversity and register. In
the case of string instruments, these textural features are also linked to the choice of
strings that are played as well as the level of the hand on the instrument fretboard.

The selected features encode information regarding note pitches, onsets, dura-
tions, string and fret indications, as well as annotations of some technical playing
techniques including Let-Ring (l-r(s)), whammy bar (w.b(s)), bend(s) and left-hand vi-
bratos (l-h vibr(s)). Note that some features may derive from combinations of others.
For example, the pitch of a note can be deduced from its string and fret value, as we
only considered tablatures for guitars with standard tuning. Table 3.1 indicates the
whole set of features.

During its internship, D. Régnier used its musical expertise to manually annotate
102 guitar tablatures from the MySongBook corpus, specifying at each bar if it was
rhythm guitar or not. The resulting dataset included 6051 rhythm guitar bars (82% of
the whole set of annotated bars). Different functions were identified within the com-
plementary class including solos, licks, riffs and studio arrangements. Annotations
and computed features for all bars of the dataset were publicly released7.

Model explainability Figure 3.8 shows the value distribution of a selection of fea-
tures extracted from bars of both classes in the annotated dataset. To facilitate the
comparison of the two classes, the histograms indicate the proportion of feature val-
ues in each class rather than the actual number of bars. As expected, rhythm guitar
and non-rhythm guitar bars appear to be respectively correlated with the presence
of chords and the presence of single notes . Non-rhythm guitar bars can also be dis-
tinguished by a lower number of notes and distinct chords. Rhythm guitar bars can
finally be distinguished by a lower register that appears in pitch, fret, and string re-
lated features. An ANOVA Fischer test is performed for each feature as an indication
of its correlation with the two classes. The results are displayed in Table 3.1.

7https://gitlab.com/lbigo/rhythm-guitar-detection

https://gitlab.com/lbigo/rhythm-guitar-detection
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FIGURE 3.8: Distribution of some features on bars annotated with la-
bels Rhythm guitar (dark, blue) and other (light, green) (Régnier, Mar-

tin, and Bigo, 2021).

Evaluation Following the leave-one-piece-out validation process described in Sec-
tion 1.3, an LSTM neural network is trained to predict if a tablature bar should be
labelled as rhythm guitar or not given its set of computed features. A recurrent
model was selected for this task in order to model the tendency of adjacent bars to
have the same function8. Different models, resulting from various combinations of
features, were evaluated and compared as shown in Table 3.2. We consider a base-
line model that only looks at the presence of chords and single notes in each bar.
We then evaluate score based features (first two columns of Table 3.1) and tablature
based features only (third column of Table 3.1). Finally, we evaluate a model taking
into account the whole set of features. In addition to F1 score, Table 3.2 displays the
precision and the recall on rhythm guitar label predictions, which might distinctively
be used as evaluation metrics depending on the foreseen model application.

On the one hand, maximizing precision penalizes false positives and potentially
leads to the creation of a consistent rhythm guitar sub-corpus although possibly
small and uniform. Such a corpus would facilitate the training of a model that is ex-
pected to produce typical, but not necessary surprising, rhythm guitar tablatures. On
the other hand, maximizing recall penalizes false negatives and potentially leads to a
larger sub-corpus with more diversity although more sparse and including more de-
batable rhythm guitar examples. Such a corpus would be appropriate for the train-
ing of a model which is intended to be creative, outputting rhythm guitar tablatures

8a number of tablatures are actually labelled by one unique function during the whole piece
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r.g precision r.g recall F1 score
chords/single notes presence 0.86 0.88 0.87

note + chord features 0.95 0.94 0.94
tab features 0.95 0.93 0.94
all features 0.96 0.94 0.95

TABLE 3.2: Precision, recall and F1 score obtained for the prediction
of rhythm guitar (r.g) with an LSTM trained on different combinations

of features.
(Régnier, Martin, and Bigo, 2021)

that possibly diverge from the common definition of rhythm guitar. In complement,
it should be noted that for a classifier that outputs a probability, like neural networks
do, moving the decision threshold, which is generally set by default to 0.5, could also
be a way to balance between consistency and variety.

As displayed in Table 3.2, the model trained on the whole set of features reaches
an F1 score of 0.95, that is 8% better than the baseline model, which only takes into
account presence of chords and single notes. To get a better estimation of the rele-
vance of the different categories of features, two additional models were evaluated,
the first one without any tablature features, the second one with tablature features
only. Interestingly, these two last models, although trained on two disjoint sets of
features, both compete with the best model.

4 Non Blondes - What’s Up (E.Guitar I)

Dire Straits - Sultans of Swing (E.Guitar I)

Django Reinhardt - Minor Swing (A.Guitar I)

The Strokes - You Only Live Once (E.Guitar II)

FIGURE 3.9: Comparison of manual annotations (top lines) and pre-
dictions (bottom lines) of a some tablatures of the dataset. Sections
labelled as rhythm guitar are displayed in blue. Other sections are

displayed in green. Empty bars are left in gray.
(Régnier, Martin, and Bigo, 2021)

Figure 3.9 displays a comparison between reference annotations (top line) and
predictions (bottom line), with the "all-features" model, for some tablatures of the
annotated corpus. Although the model succeeds in identifying large scale sections,
it still predicts unlikely short sections, sometimes for one unique bar. Comparing
statistics on predictions and reference annotations highlights the difficulty of the
model to predict continuous rhythm guitar sections. In particular, the model tends
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to detect isolated rhythm guitar bars whereas the reference annotation do not in-
clude any of them. Surprisingly, the use of a bidirectional LSTM did not significantly
reduce the prediction of isolated rhythm guitar bars. The limited amount of training
data might explain the difficulty of the network to efficiently learn switch tendency
between the two labels. Future experiments include testing sequence models, such
as Hidden Markov Model, that might better manage limited training data.

Figures 3.10a and 3.10b illustrate two examples of false negatives, i.e. rhythm
guitar bars predicted as being non-rhythm guitar bars (the 2nd bar in both exam-
ples). In the first example, the wrong prediction occurs at the final bar of a musical
phrase, which leads to a new phrase beginning on the next bar. The rhythm guitar
punctually plays a short melodic lick often referred as a fill, similarly to the example
in Figure 3.2d. In the example 3.10b, the guitar starts to play bass single notes and
produces a melodic line which is wrongly estimated by the model as non-rhythm
guitar. This behavior could arguably be qualified as being at the edge of the com-
mon definition of rhythm guitar when looking at the guitar tablature isolated. One
natural track of improvement of this method is therefore to take into account the
other tracks of the song, especially the singing part.

Figures 3.10c and 3.10d illustrate examples of false positives, i.e. non-rhythm
guitar bars predicted as rhythm guitar bars. The first example includes an extract of
a solo part where the guitar repetitively plays arpeggios of the underlying chord se-
quence. In spite of the high register, which is unlikely for rhythm guitar sections, the
model is probably misled by the repetition and low variety of the tablature content,
as well as the presence of perfect triads, these features being predominantly corre-
lated with rhythm guitar sections. The example 3.10d is extracted from a jazz solo.
The model is clearly misled by the sudden occurrence of chords here. As it is often
the case in jazz solos, the melody punctually turns into successive chords which do
not necessarily feet the underlying chord sequence. This behavior commonly lasts a
few bars before going back to a monophonic melody.

When interpreting these results, it is worth remembering that the small amount
of wrong predictions is likely to correspond to limit cases of rhythm guitar whose in-
clusion/exclusion in a rhythm guitar dataset might not be crucial due to the relative
subjectivity of what rhythm guitar is.

3.3.5 Rhythm guitar texture imitation

An accompaniment part in modern popular music is generally driven by an un-
derlying sequence of chord symbols, which is rendered with a particular texture
contributing to the style of the piece. Figure 3.11 illustrates a singing part accompa-
nied by a rhythm guitar part and a bass guitar part, following the chord sequence
[F, Dm]. Rhythm guitar parts, as most accompaniment parts in this style, commonly
render successive chord symbols with a similar texture in order to conserve a style
uniformity over the song. Figure 3.12 displays two score examples of rhythm guitar
region illustrating this texture uniformity.

This section describes an experiment for the task of rhythm guitar continuation
by texture imitation which can be illustrated by Figure 3.13. A model predicts the
tablature of a chord region (in green on the figure) given its labelled chord sym-
bol (G on the figure) and the tablature of the previous chord region (in blue on the
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(A) Stairway To Heaven (Led Zeppelin)

(B) When The Sun Goes Down (Artic Monkeys)

(C) Hotel California (Eagles)

(D) Minor Swing (Django Reinhardt)

FIGURE 3.10: Examples of false negatives (A and B): the second bar
is wrongly predicted as non-rhythm guitar on both extracts.

Examples of false positives (C and D): the second and third bars are
wrongly predicted as rhythm guitar on both extracts.

Tablatures rendered with Guitar Pro.

figure), assuming the continuity of the texture. This task is addressed as a super-
vised machine learning problem, where a model is trained with a set of couples of
adjacent rhythm guitar chord regions which are assumed to feature a similar tex-
ture, like in the examples in Figure 3.12. The training set is limited to rhythm guitar
sections of MySongBook which are obtained thanks to the method presented in Sec-
tion 3.3.4. Only rhythmically similar couples were then selected. A Gated Recurrent
Unit (GRU) neural network with two hidden layers was trained to predict the sec-
ond region given its labelling chord symbol and the previous region. The regions
were encoded with the StringFretWithHold encoding detailed in Section 3.3.2. Chord
symbols were represented by pitch-class vectors.

Evaluation Figure 3.14 illustrates various outputs of the model. Each time, the
content of the bar A accompanied by the chord label of the bar Br are given as input
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FIGURE 3.11: A lead melody (top) accompanied by a rhythm guitar
part (middle) and a bass part (bottom), extracted from the song Star-

man (David Bowie).

to the model, which outputs the prediction Bp which we qualitatively compare to
Br. The example in Figure 3.14a illustrates an exact prediction, which is here facil-
itated by a constant rhythm over the bars, as well as the use of two very common
chord positions (chords D and A), as confirmed by the statistics on corpus chord
positions detailed in Figure 3.6. Figure 3.14b illustrates a wrong prediction, partially
due to an unexpected change of rhythm between bars A and Br. In addition to the
rhythm change, the bar Br includes an unprecedented use of an open string, indi-
cated by fret 0, while the model chooses the fret 7 at the second string, therefore
inducing an inversion on the chord (Am/E instead of Am) in Bp. Figure 3.14c illus-
trates the difficulty of the model to generate single notes, which almost systematic
fails on arpeggio texture imitation, and could presumably be improved by taking
into account Let Ring playing techniques that are almost systematically employed in
arpeggios. Finally, Figure 3.14d illustrates the generation of an unlikely strumming
Bp which contrasts with the regularity of the initial bar (A) and the reference bar (Br)
and illustrates some limits of the current model to produce playable tablatures.

Evaluating the output of a generative model is known to rise a number of ques-
tions as it generally relies on the user/listener subjectivity. Taking advantage of the
supervised training framework of our continuation task, we focus our evaluation on
the ability of the model to output a tablature content similar to the expected one. For
this purpose, we use three high-level descriptions of tablature region, which respec-
tively focus on rhythm, pitch-class and fretboard position content. Given a tablature
region X, we notate o(X) the set of sixteenth positions at which one or more notes
have their onset. We notate pc(X) the set of pitch-classes of the notes included in
the regions. We finally notate p(X) the set of string/fret combinations of the notes
included in the region. The region illustrated on the top left of Figure 3.13 features
the following descriptions: o(A) = {0, 2, 4, 5, 6, 8, 10, 12, 13, 14}, pc(A) = {0, 4, 9} and
p(A) = {(1, 0), (2, 1), (3, 2), (4, 2), (5, 0)}.

The results displayed in Table 3.3 indicate that our model, when trained on rhyth-
mically similar couples (o(A) = o(B)), reaches a F1 score of 0.67. 35% of the vectors
are correctly predicted and 5% of second regions are perfectly predicted (14% if we
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region A region B

(A) Rhythm guitar region from Wish
You Were Here (Pink Floyd)

region A region B

(B) Rhythm guitar region from
There’s Gonna Be Some Rockin’

(AC/DC)

FIGURE 3.12: Two rhythm guitar tablature extracts illustrating tex-
ture uniformity across successive chord regions. Textural features
similar from one bar to the next one include rhythm, ambitus, note

density and string/fret positions.

exclusively evaluate rhythmically similar couples). A large part of the inexact pre-
dictions of B succeed however in perfectly replicating the score content in terms of
onsets, pitch-classes, and to a lesser extent, positions as shown by the third, fourth
and fifth columns of Table 3.3. Although these prediction rates seem low, we re-
mind that one exact B region prediction consists in 157 × 16 = 2512 binary values9

that must all be correctly predicted which makes the problem relatively hard if we
consider the unpredictable nature of music despite its frequent uniform texture in
accompaniment parts. Additionally, it must be reminded that if the prediction of
B is used as a (strict) way to evaluate our model, the ultimate goal is to generate
tablature regions that would be plausible enough to be used in a context of assisted
composition, which is arguably a less demanding requirement than the ability to
predict an upcoming region within a musical piece. Using a training set limited
to rhythmically similar couples obviously limits the ability of the model to learn
rhythmic variations that potentially occur over adjacent regions, but it nevertheless
provides a more consistent model, which is more likely to output acceptable con-
tent although with limited originality. As for the playing function prediction task
detailed in Section 3.3.4, evaluating this trade-off should be done according to the
expected use of the method in a composition process. On the one hand, a consistent
model might be useful to assist the functional composition of simple accompani-
ment parts, providing a basis allowing to focus on another layer, for instance in a

9157 values resulting from the StringFretWithHold encoding, and 16 time steps in the common case
of a 4 beats measure divided in height [eighth] note slices.
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FIGURE 3.13: The task of rhythm guitar continuation by texture im-
itation applied on two adjacent bars. A model predicts the tablature
content of the second bar given its chord label and the content of the

previous bar, assuming the continuity of the texture.

F1 Bp[i] = Br[i] p(Bp) = p(Br) o(Bp) = o(Br) pc(Bp) = pc(Br) Bp = Br

0.67 (0.8) 35% (46%) 18% (24%) 25% (66%) 46% (51%) 5% (14%)

TABLE 3.3: Evaluation of our model on the task of predicting the re-
gion B from its chord label and the region A. The model was trained
exclusively on couples (A,B) with o(A) = o(B). The numbers in brack-
ets (x) are obtained by evaluating the models exclusively on couples
that are rhythmically similar (o(A) = o(B)), considering the others as

highly difficult to predict.

pedagogical context. On the other hand, a more versatile model trained on possibly
dissimilar couples could lead to more unexpected outputs, stimulating the creativ-
ity of the composer but with a presumable need of post-generation corrections and
re-writing. In particular, the ability of a model to allow texture variations would
seem particularly promising for the composition of contrasting chord regions that
typically occur in this repertoire after three uniform occurrences as formalized by
the System and Contrast Model (Bimbot et al., 2016).

3.4 Perspectives

The continuation of this research on guitar tablature modeling is described in de-
tails in the proposal of the 4-years TABASCO ANR JCJC project (TAblature ASsisted
COmposition) that I am coordinating from October 2022. This perspective section
aims at giving a synthetic overview of these upcoming works. As I will dedicate
most of my research time of the next years on this project, this perspective section is
more detailed than the ones of Chapter 2 and 4.

After a brief description of the goals of the project, we will introduce its three
main parts which respectively focus on composition practice studies, experimental
algorithms and software contributions.
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(A) Proud Mary (Cree-
dence Clearwater

Revival)

(B) Miss you (The
Rolling Stones)

(C) One (Metallica)

(D) One (Johnny Cash, original song: U2)

FIGURE 3.14: Prediction of the second bar (Bpred) of different contigu-
ous couples A + Bref of the dataset.

3.4.1 Objectives

The project aims at elaborating algorithmic methods to assist musicians, of all skills
and musical profile, in the task of composing and writing guitar tablatures in mu-
sical styles that can be grouped under the general term of modern popular music.
These methods notably include machine-learning approaches benefiting from cor-
pus data. They do not aim at composing music but rather at proposing tools to
the composer, on selected situations that commonly arise during the composition
and writing of guitar parts. In this sense, these situations might be more easily as-
similated to music arrangement than music composition. This includes for instance the
continuation of an accompaniment part, the transfer of the style of a tablature extract
into another one, or the fine-tuning of style expressiveness in a tablature. While the
composition of the score’s heart components, such as chords and melody, is left to
the composer, the TABASCO tools aim at facilitating the rendering of these elements
through a concrete tablature, with a fine control of stylistic and expressiveness as-
pects.
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The use of the proposed methods can be beneficial in two ways. On the one hand,
they aim at assisting composers with limited guitar skills in creating realistic guitar
parts, for example to accompany a lead singing part or other instruments in a band,
therefore opening guitar music composition to a wider public including beginner
guitarists and even non-guitarists. On the other hand, they aim at stimulating the
creativity of experimented guitarists by encouraging them to experiment musical
choices outside their compositional habits. Essential for this second objective, this
project aims at elaborating tools with substantial control possibilities, thus maintain-
ing the composer at the heart of the creative process. In addition to the creation of
composition tools, the project aims at improving our knowledge on modern popular
music composition, which remains a relatively unknown field due to the variety of
practices.

From the musicology point of view, it is assumed that the study of modern pop-
ular music practices in the guitarist community, by means of corpus study and com-
poser practice surveys, will enable us to precisely specify innovative algorithms that
can meet the composer’s needs in common composition scenarios, in particular re-
lating to style expression. For the reasons detailed in Section 3.1.3, this project con-
tributes to a major challenge in modern popular music, which is to motivate, by the
use of innovative computational tools, the reestablishment of the musical score as a
key tool for the composition of popular music. In order to maximize the impact of
these methods on the composer community, some of them will be selected and dis-
tributed as plugins embedded in the open-source reference music notation software
MuseScore, which is used by a circle of musicians much larger than the guitarist
community.

From the computer science point of view, the project is built on the hypothe-
sis that the elaboration of such tools has become possible thanks to the recent ad-
vances of machine learning algorithms, as well as the substantial quantity, quality
and variety of guitar tablatures that are necessary to efficiently train these algorithms
and which are made available thanks to our collaboration with Arobas Music (the
MySongBook corpus) as well as some recent open corpora such as DadaGP (Sar-
mento et al., 2021).

Although these algorithms will be trained at presuming some information that
is hardly predictable because of the intrinsic diversity of music, it is assumed that
this training procedure ultimately enables the model to produce plausible, and di-
verse, outputs that can arouse the interest of the composer. Furthermore, limiting the
intervention of algorithms to well-defined subtasks of the composition process also
contributes to address this challenge of reconciling the divergence between the open-
ended and under-determined concepts of artistic creation and the machine-learning
paradigm that relies on well-defined problems and quantifiable performance (Gioti,
2021).

3.4.2 Composition practice studies

We first plan to conduct a composition practice survey focusing on guitar music in
the modern popular style. This study will aim at studying the impact of music no-
tation software on the composition process, and identifying composition and nota-
tion contexts in which the composer’s experience could be enhanced by algorithmic
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tools, especially focusing on accompaniment part composition and gesture annota-
tions. In addition to identifying the functionality of these tools, the survey will aim
at specifying the user interface and the control possibilities that the tools should pro-
vide when they will be implemented as music composition software plugins. In a
second survey, coming in the end of the project, composers will be asked to experi-
ment and evaluate the tools produced by the project. The two surveys will involve,
as much as possible, the same pool of participants. In addition to the specification of
future algorithms, we believe that these survey will generally contribute to delimit
and improve our knowledge in modern popular guitar music composition practices.

3.4.3 Tablature arrangement algorithms

The main part of the project will consist in elaborating machine-learning algorithms
intended to assist tablature arrangement. These research axes will be at the center of
the PhD of A. D’Hooge. They can be divided into two categories being accompani-
ment parts composition and gesture annotation modeling.

Accompaniment parts composition

Accompaniment composition algorithms will meet two specific composition tasks
being the composition of a rhythm guitar section given a chord sequence and a ref-
erence texture and the composition of a bass guitar section given a rhythm guitar
track tablature. In addition, it is planed to investigate sophisticated methods based
on the use of variational autoencoders allowing an intuitive navigation within gen-
erated outputs for these tasks. In a general way, a particular attention will be given
regarding the ability of the algorithms to be controlled by the user, according to in-
creasing concerns in the MIR field on this question (Briot and Pachet, 2020).

Figure 3.11 illustrates a score excerpt of the song Starman (David Bowie). The
extract includes two successive chord regions (F and Dm) with both a rhythm guitar
track and a bass guitar track.

Rhythm guitar part composition This axis is in direct continuation with the work
presented in Section 3.3.5. The perspectives of this work include an extension of the
generation process to render a generic array of chord symbols given a reference tex-
ture, including the rendering of chord regions with variable length. Taking into ac-
count the underlying metric of the chord symbol sequence could additionally allow
to vary the versatility of the model depending on the relative positions of the chord
regions, therefore encouraging diversity at theoretical contrasting regions as pro-
posed by Bimbot et al. (2016). The architecture of the model could also be improved
for instance by inputting the conditioning chord symbol between an encoding and
a decoding stack of layers, as it is commonly done in encoder-decoder architectures.
In such architecture, the encoding part is assumed to extract the texture of the input
region, while the decoding part is assumed to render this texture given an arbitrary
chord symbol (Wang et al., 2020), possibly helped by the use of an adversarial mech-
anism (Kawai, Esling, and Harada, 2020). Beyond the continuation of a tablature
extract, this method is felt to be usable for style transfer tasks where the idea is to
interpret a song A in the style of another song B, which has raised a number of MIR
researches lately (Dai, Zhang, and Xia, 2018; Cífka, Şimşekli, and Richard, 2020).
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Bass guitar track composition Similarly to rhythm guitar, the musical role of the
bass guitar part strongly relates to the realization of the song’s underlying chord pro-
gression. We plan to elaborate a model able to generate bass tablature suggestions in-
tended to accompany an input rhythm guitar tablature region. Such a tool primarily
aims at assisting non-bassists wishing to add a bass track to accompany a guitar part
being composed. Additionally, making the model controllable will also promote its
use by experimented bass guitar composers aiming at diversifying their composi-
tional habits, following research initiatives in the audio domain (Grachten, Lattner,
and Deruty, 2020). To address this goal, we will experiment an approach that con-
sists in training a sequence-to-sequence neural network, LSTM or transformer, to
predict the content of a bass track tablature given an aligned rhythm guitar tabla-
ture. The MySongBook corpus provides such alignments for most included songs.
As this task can be reformulated as a sequence translation problem, a particular look
will be given to recent research successfully adapting Neural Machine Translation
methods to the musical domain (Makris, Agres, and Herremans, 2021). The exper-
iments will be done with various stylistic homogeneity of the training corpus. The
model will be made controllable by the addition of target textural features (density,
diversity, and compatibility with a style label) specified along with the input rhythm
guitar tablature.

Navigating into accompaniment spaces Going further into assisted accompani-
ment composition approaches, a perspective of this research is to investigate the
unsupervised learning of accompaniment texture spaces, in which the composer
could easily navigate and select suggestions during its composition process. These
navigation spaces will aim at suggesting accompaniment textures made of rhythm
guitar, bass guitar, or both. The textures will be organized in these spaces by prox-
imity, presumably reflecting style relations. These spaces will be built by training
variational auto-encoders (VAEs) (Kingma and Welling, 2013) on tablature chord
regions. During their training, VAEs will be building latent spaces aiming at orga-
nizing the datasets training textures with musically meaningful distances. Posterior
to the training, the models will enable the sampling of unseen textures by interpo-
lation in their latent spaces. VAEs have proven to be promising in human/machine
music co-creativity (Wang et al., 2020; Kawai, Esling, and Harada, 2020; Grachten,
Lattner, and Deruty, 2020; Roberts et al., 2018; Esling et al., 2019) but have not been
investigated yet in our knowledge in the specific case of symbolic guitar tablatures.
A major challenge in this task will be the musical interpretation of the dimensions
of the learned latent spaces and their controllability in the context of user plugins.

Unsupervised approaches for texture modeling are an important part of our
research perspectives for both guitar music and piano music as described in Sec-
tion 2.5. We plan to investigate this axis on both repertoires in the two next years in
the context of the PhDs of A. D’Hooge and L. Couturier in close collaboration.

Gesture annotation modeling

The inclusion of fingering and playing techniques annotations in the MySongBook
corpus enables to address their prediction as supervised machine-learning tasks.
These prediction methods will be implemented as tools aiming at (1) facilitating the
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writing/transcription of non-guitar music into playable and expressive guitar tab-
latures and (2) experimenting different rates of expressiveness in a tablature region.
Importantly, the methods will let the user have fine control over the prediction in
order to adapt the output to a targeted style and level of playability.

Position estimation As mentioned in Section 3.1.1, the position choice, also called
fingering, is an inherent task to the guitar and other string instruments enabling the
playing of a same pitch at different positions of the instrument. Tablatures spec-
ify string/fret combinations for each note in order to dispense the performer from
this decision. Transcribing a non-guitar musical piece into a guitar tablature requires
performing these position choices, which is generally a non-trivial task especially for
beginners. While most of the studies so far have proposed to compute an optimal se-
quence of positions based on the musical score content, practice studies have shown
that position choices also depend on out-of-score context such as the proficiency of
the player (Yazawa, Itoyama, and Okuno, 2014) as well as its playing style (McVicar,
Fukayama, and Goto, 2015). This task will pursue two objectives. First, it aspires
to improve the state of the art in automatic position estimation based on in-score
information. Secondly, it aims at making such models controllable in order to let
the user navigate between different optimal position solutions that differ in terms of
style and level of playability. The first objective will be addressed by taking advan-
tage of cutting-edge deep learning techniques, in particular attention-based neural
networks, as well as unprecedented large and high-quality quality training sets in-
cluding the MySongBook corpus and the DadaGP corpus (Sarmento et al., 2021).
The second objective will be addressed by informing the model at the training stage
about indications regarding the level and the musical style of the tablature, which
are available through text tags in the MySongBook corpus. At the prediction stage,
the model will then be usable with variable constraints on style and level.

Playing technique prediction This task aims at elaborating models for the pre-
diction of playing technique annotations, as presented in Section 3.1.1, which has
never been addressed in symbolic tablatures to our knowledge. Such methods aim
at being used by non-expert guitarists to fine-tune the expressiveness of a tablature
being either composed or transcribed from a non-guitar score. Playing technique
prediction models will be experimented on both low level and high-level tablature
representations. High level representations will relate to melody, harmony, rhythm
or texture, that will be found to be correlated with playing techniques annotations
following some preliminary results obtained by Q. Normand during its Master in-
ternship that I supervised (Normand, 2021). In a first experiment, the automatic
computation of these features will let us approach the playing technique prediction
task as a supervised classification problem where the occurrence of each technique is
independently estimated on each element (notes or chords) of the tablature given its
context. In a second experiment, sequence models such as LSTM and Transformers
will be used to model the dependency between nearby playing techniques anno-
tations and make the prediction on all elements of a region in a row. In order to
make this model controllable by the user on different axes, such as expressiveness
and musical style, we will take advantage of the property of neural networks to out-
put prediction probabilities, letting the user gradually move the decision threshold
to experiment various amounts of expressiveness. Regarding style, the user will



50
Chapter 3. Assisting music composition: modeling the language of guitar

tablatures

have the possibility to select a model trained on different style-specific sub-dataset,
which is made possible thanks to style-related labels available in the MySongBook
corpus. The interpretation of playing technique statistics as well as their relation to
musical style will be studied in close collaboration with the musicologist B. Navarret
given his past research related to guitar playing techniques and composition prac-
tices in the specific case of contemporary music composition (Lähdeoja et al., 2010).
A particular attention will be given to the occurrences of bended notes within typi-
cal pentatonic patterns and their ability to contribute to the establishment of major
modern popular guitar musical styles.

3.4.4 Software contributions

We finally plan to contribute to several open-source music projects used by the MIR
research community, Music21, Dezrann and MuseScore, to improve their ability to
process guitar tablatures. These contributions will serve the needs of the algorithms
described above, but they will also aim at facilitating and encouraging research and
pedagogy initiatives of the academic community around guitar music.

Contributions to Music21

Despite substantial efforts in the last years, the support of tablatures in the python
library music21 is still sparse and unstable. We plan to gather a set of pull requests
throughout the project to improve guitar related features including the processing
of playing techniques, tuning/instrument information that could improve the vi-
sual/audio rendering within music notation software such as MuseScore or Guitar
Pro, as well as the accurate reading and writing of tablatures in standard music en-
coding formats including MusicXML and MEI.

Contributions to Dezrann

Dezrann (Garczynski et al., 2022) is a score annotation browser application devel-
oped by the Algomus team and used in research and pedagogy for score visual-
ization, annotation and analysis. In the frame of this research axis, Dezrann will
be improved to provide a proper visualization and annotation of guitar tablatures.
Although displaying tablatures in browser is already proposed by a number of com-
mercial applications including SongSterr and Ultimate Guitar, Dezrann will to our
knowledge be the first application to propose the adding of manual annotations, that
can be visualized and exported for research and pedagogy purpose.

MuseScore plugins

The assisted-composition algorithms elaborated in the project will be implemented
through user plug-ins which will enable the non-computer-scientist musician to use
these methods through a comprehensive user interface. We plan to develop plu-
gins implementing methods to assist the composition of rhythm guitar parts, bass
tracks, to assist the adding of playing techniques and to assist the fingering choice to
turn a generic score into a guitar tablature. Importantly, these tools will be used to
evaluate the assisted-composition algorithms in the guitarist composer community.
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The plug-ins will be integrated within the open-source music notation/composition
software MuseScore. MuseScore’s plugins are developed in the JavaScript based
language Qt. Their creation is facilitated by a large and active developer community
as well as a rich documentation10. The development of the plugin’s interfaces will
carefully follow findings from the composition practice survey (Section 3.4.2), espe-
cially ergonomic specifications indicating how the composers hope these tools to be
controllable.

The software MuseScore is selected for this task for a number of reasons. It is
free and open-source, and it is massively used by musicians across the world ( 7000
downloads per day in 201611) with a foreground position in music pedagogy and
musicology. The choice of MuseScore in this project is also strategic given the re-
cent software’s announcement regarding upcoming development efforts on guitar
tablature processing12 and more generally in composition features13. Crucial for this
task, MuseScore puts substantial efforts in supporting a practical environment for
the development of contributor’s plugins enabling developers to implement specific
functionalities into the software, which has already been used to experiment music
algorithms (Hadjeres, Pachet, and Nielsen, 2017). Finally, as the tools targeted in this
research axis are also intended to be used by non-guitarist musicians, the MuseScore
community will hopefully be more impacted than user communities of guitar spe-
cific software such as Guitar Pro or Ultimate Guitar as this software is not restricted
to the practice of any instrument in particular.

3.5 Impacts

Our research on tablature modeling has started in 2017 and our first articles on the
topic were published in 2020. While it is too recent to enable us to estimate its impact
to date on the scientific community, we hope that our work on tablature processing
will soon become an essential part of the landscape of academic guitar research. We
propose to detail in this section the expected impacts of the perspective research
lines described in the last section.

3.5.1 Scientific impact

From the musicological point of view, we hope that the upcoming composition sur-
vey will improve our knowledge on modern popular music composition practices
and encourage research initiatives in this understudied and protean area. More
generally, the wish to address localized tasks within the composition process con-
tributes to shift MIR research efforts in music generation towards human centered
tools rather than systems emulating the composer’s role (Esling and Devis, 2020).
This point of view is in alignment with our recent work on musical co-creativity in
the frame of the AI song contest (Micchi et al., 2021). In the MIR field, this research
aims at promoting cutting-edge methods, notably involving machine learning, to
address music analysis and composition problems that can be easily extended to

10https://musescore.org/fr/handbook/developers-handbook
11https://en.wikipedia.org/wiki/MuseScore#MuseScore_4
12https://musescore.org/en/node/326995
13https://musescore.org/fr/node/306609

https://musescore.org/fr/handbook/developers-handbook
https://en.wikipedia.org/wiki/MuseScore#MuseScore_4
https://musescore.org/en/node/326995
https://musescore.org/fr/node/306609
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other instruments than the guitar, in particular the piano which shares a number of
properties. The concomitance of the PhD of L. Couturier on the classical piano reper-
toire (see Section 2.3.2) and the PhD of A. D’Hooge focusing on the modern popular
repertoire are intended to benefit from each other and be pursued in close collabo-
ration regarding the specific study of accompaniment textures, which presumably
involves a number of common features between both repertoires. Finally, we hope
that the open-source contributions (Music21, MuseScore and Dezrann) which are
necessary for this project will enlarge perspectives of computational approaches to
guitar music in the MIR community.

3.5.2 Economic impact

The musical marketplace includes numerous software dedicated to music compo-
sition and production, also known as Digital Audio Workstations (DAWs), such as
Cubase, Live, or Logic Pro. The user can add specific functionalities and sound ef-
fects, also known as VST plug-ins, which has led companies to focus their activity on
the creation of these platform-independent plugins to assist music composition and
production. The implementation of algorithmic functionalities to assist music com-
position and production within DAW plugins has been experimented in late MIR re-
search on the audio domain (Esling et al., 2019; Deruty et al., 2022) as well as the sym-
bolic domain (Roberts et al., 2019) and prefigures a promising field of applications
for companies developing DAWs and/or plugins as well as music notation software
that aim at converging towards composition software14. The guitar is one of the rare
instruments that has aroused the creation of specific notation/composition software,
including Guitar Pro, Flat, Sibelius G7, probably because of the massive popularity
of the instrument as well as its specific music notation system. Augmenting such
software with composition functionalities similar to those proposed in this research
axis opens a wide variety of commercial applications that should appear in the next
years. Our discussions with Arobas Music (Guitar Pro) have indeed demonstrated a
substantial interest of these companies in these innovative functionalities.

3.5.3 Social and cultural impact

The assisted composition tools of this research axis aim at facilitating the access to
guitar music composition in the modern popular style to a wider circle of musicians.
Music beginners, including non-guitarists, will get the opportunity to circumvent
the lack of specific skills, that usually require years of practice, to compose realistic
guitar tablatures. These tools therefore pursue at the level of the musical score a ma-
jor technological shift that has contributed in the last decades to strongly facilitate
the access to music production by the means of accessible and intuitive digital tools.
We also estimate that these tools have the potential to encourage non-composer gui-
tarists to experiment basic composition processes, and ultimately lead to unexpected
composer vocations. On the other hand, the controllability of these tools will give
the opportunity to expert musicians/guitarists to be exposed to unusual musical
ideas, thus encouraging the diversification of their creative process. An important
consequence of the adoption of these tools by the modern popular music composer

14MuseScore 4. Moving from notation software to composition software https://musescore.org/
fr/node/306609

https://musescore.org/fr/node/306609
https://musescore.org/fr/node/306609
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community would be to contribute to make evolve the relationship the guitarists
have with the tablatures, not only as a memorization purpose but as a way to foster
creativity while exploring new ideas.

Finally, a close collaboration and communication with the guitarist community
will also be an opportunity to emphasize the potential of algorithm-based tools for
the composers rather than for the audience, and to disambiguate possible ethical ap-
prehensions regarding the principle of using algorithmic tools in composition (Ben-
Tal, Harris, and Sturm, 2021).
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Chapter 4

Questioning NLP approaches for
score modeling

The research axis described in this chapter aims at studying the use of Natural Lan-
guage Processing (NLP) methods to model musical scores. More specifically, we are
interested in evaluating the adaptability, the performance and the limits of this in-
creasing practice in the MIR community. This interdisciplinary research has been
initiated in collaboration with M. Keller from the MAGNET team of the CRIStAL
laboratory. It gave rise to the co-supervision of two Master internships (2021 and
2022) and one PhD (beginning in October 2022). This research axis is also the focus
of a bilateral collaboration with D. Herremans from the AMAAI team at Singapore
University of Technology and Design which is funded by a Campus France PHC
project (2022-2023) that I am coordinating.

4.1 Computational processing of music as a language

4.1.1 Some modern NLP techniques

The field of Natural Language Processing (NLP) gathers a set of computational tech-
niques intended to model natural language for a wide variety of applications includ-
ing, among others, automatic text analysis, classification, translation, and genera-
tion.

Textual data are commonly structured as sequences of atomic elements such as
sequences of characters or ideograms, and at some higher level sequences of words
and sentences. Most NLP algorithms are then conceived to process sequences of
elements, these elements being commonly referred to as tokens. Although tokens
generally correspond to words or characters, a wide variety of tokenization strategies
are discussed and compared in the NLP community (Mielke et al., 2021). We will see
later in this chapter that tokenization seems to be a more critical step in the symbolic
musical domain than in the text domain.

As an essential part of NLP, language models (sometime called LMs) are models
that assign probabilities to sequences of tokens (Jurafsky and Martin, 2014). Form-
ing an important part of the history of NLP research, n-gram models are one of the
simplest type of language models. N-gram models are computed given a reference
text corpus and allow to estimate the probability of a token given the previous ones
and to assign probabilities to entire sequences. These probabilities are commonly
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approximated using the Markov assumption which estimates that the probability of
a token occurrence only depends on the n previous tokens.

NLP research has been considerably renewed in the last decade by deep neu-
ral network models, which have demonstrated unprecedented performances in a
number of tasks. These models include recurrent networks such as Long short-term
memory (LSTM) (Hochreiter and Schmidhuber, 1997), as well as attention based
networks such as Transformers (Vaswani et al., 2017), which enable the measure of
mutual relations between the words of a sentence. In contrast with recurrent neural
networks, the transformer do not explicitly model information of token positions in
its structure. Instead, it requires adding representations of absolute positions to its
inputs, referred as positional encodings. Alternatively, relative positional encodings have
been proposed by Shaw, Uszkoreit, and Vaswani (2018) to encode distances between
tokens instead of their absolute sequence position.

The use of deep neural networks allow the design of particularly performant
language models. Successive layers of deep neural networks allow the learning of
concepts with increasing levels of abstraction, with the last layers ultimately aiming
at modeling the meaning of entire sentences. When tokens correspond to words, the
first layers in turn commonly aim at building expressive word representations com-
monly referred to as word embeddings. Embeddings represent words within sophisti-
cated semantic spaces in which words with close meanings are represented by vec-
tors with close values. Embedding methods are useful in wide variety of NLP tasks
and have motivated the elaboration of dedicated algorithms such as Word2Vec (Mikolov
et al., 2013). When applied to notably large and representative corpora, embeddings
provide pre-computed word representations that can be re-used in concrete NLP
tasks. This practice is a form of transfer learning (Radford et al., 2018), a practice
that consists in pre-training a model on a general task with a large set of unlabeled
data before fine-tuning it for the purpose of a specific downstream supervised task
where a smaller set of data is available. Transfer learning methods also include the
pre-training of deep neural networks, which have allowed major breakthroughs in-
cluding GPT (Radford et al., 2018) and BERT (Devlin et al., 2019).

Although this variety of notions and techniques have originally been elaborated
to address NLP tasks, their performance has encouraged their use in most research
fields involving sequential data modeling, including in particular audio and music
processing.

4.1.2 Using NLP techniques for symbolic music processing

Modeling musical scores with NLP techniques has a long history which seems to
begin with the use of n-gram models (Brooks et al., 1957) dating back from the emer-
gence of computer music. The elaboration of viewpoint representations (Conklin and
Cleary, 1988) has thereafter enabled a wide diversification of musical n-gram mod-
els. Viewpoints provide sequential representations of a score excerpt with a focus
on a combination of selected musical layers such as pitches, durations, intervals or
melodic contours. They have been used for the tasks of music prediction (Conklin
and Witten, 1995), pattern discovery (Conklin and Anagnostopoulou, 2001), genre
classification (Conklin, 2013) and transformations (Bigo and Conklin, 2015). N-
grams and viewpoints have also raised interest in the cognitive science field where
they have been used to build music expectation models such as IDyOM (Pearce,
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FIGURE 4.1: A score excerpt represented with two tokenization meth-
ods (Midi-Like and REMI). Figure extracted from (Fradet et al., 2021).

2005). At a lower representation level, string processing techniques such as factor
oracles have in turn opened a wide research area in the field of machine improvisa-
tion (Assayag and Dubnov, 2004).

Over the past decade, the increasing use of deep neural networks such as trans-
formers in music generation tasks has in turn promoted the elaboration of dedicated
representation methods, based on sequences of musical tokens. The Midi-Like to-
kenization by Oore et al., 2020 reflects the syntax of MIDI messages (e.g., Note On
and Note Off) accompanied by specific tokens, Time Shift, which indicate the time
interval between two successive MIDI events. In contrast, the REMI tokenization
proposed by Huang and Yang, 2020, more closely translates the content of the mu-
sical score by introducing duration and position tokens exempting the use of Time
Shift and Note Off tokens. Figure 4.1 illustrates these two tokenizations starting
from a simple score excerpt. More recently, Hsiao et al., 2021 proposed a token vo-
cabulary in which tokens describing a same musical event are grouped together as
compound words. Compound words have a fixed length and their component tokens
need to be processed by distinct heads of a transformer model. In order to facil-
itate the comparison of major tokenization methods in MIR research, the MidiTok
python library developed by Fradet et al., 2021 allows the direct encoding of any
MIDI content with most common tokenizations.

The influence of NLP in symbolic music representations has also led to research
aiming at learning meaningful musical spaces analogous to word embeddings such
as Word2Vec. These include Chord2vec (Madjiheurem, Qu, and Walder, 2016) and
musical context vectors (Chuan, Agres, and Herremans, 2020).

Transferring NLP techniques to the musical domain has notably increased with
the emergence of deep neural networks. Recurrent and transformer neural net-
works, which have originally been conceived for NLP, have become a standard tool
for a number of MIR tasks, especially around music generation. The use of trans-
former neural networks for music generation has initially been introduced by Huang
et al., 2019 with the Music Transformer model in which the transformer model, origi-
nally conceived for machine translation, is adapted to generate piano music. Impor-
tantly, this last study uses the principle of relative positional encoding which seems
more adapted than the original positional encoding to model relative timing, which
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FIGURE 4.2: Number of occurrences of some terms related to NLP in
ISMIR article abstracts, computed with the ISMIR explorer API (Low

et al., 2019).

is an essential component in music. Aiming at facilitating the modelling of long se-
quences with recent linear-variants of the transformer, Stochastic Positional Encoding
has recently been proposed as an alternative to relative positional encodings, show-
ing promising effects on music generation (Liutkus et al., 2021).

Transformers have also been adapted in a variety of specific tasks including har-
mony analysis (Chen and Su, 2021), pop music generation (Huang and Yang, 2020),
fingerstyle guitar tablature generation (Chen et al., 2020) or symphony music gener-
ation (Liu et al., 2022). Although transformer models are increasingly used in MIR,
the transposition of the self-attention concept into the musical domain has rarely
been studied to date. A system dedicated to music self-attention visualization has
been proposed by the Google Magenta team (Huang et al., 2018) but without pro-
viding any tool allowing a systematic analysis of musical attention.

Figure 4.2 illustrates increasing occurrences of some words relating to the field
within ISMIR article abstracts, including transformer, attention or language.

Inspired by its success in text with the BERT model, transfer learning has also
been the object of a number of musical experiments lately. These include Muse-
BERT (Wang and Xia, 2021), MusicBERT (Zeng et al., 2021) and MidiBERT-Piano (Chou
et al., 2021) which all aim at building unsupervised pre-trained models, which can
be fine-tuned for musical supervised downstream tasks.

Interestingly, the possibility of using NLP tools in MIR also seems to have an
influence on the formulation of MIR tasks. For instance, music generation driven by
abstract feature scenarios, for instance emotion-based values, can be formulated as a
Neural Machine Translation problem (NMT) where a model is trained to transform
a sequence into another one (Makris, Agres, and Herremans, 2021).
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Facing the increasing use of NLP techniques in the audio and musical domains,
the workshop NLP4MuSA (Natural Language Processing for Music and Spoken Au-
dio) has been created to gather research initiatives in this field. The NLP4MuSA
workshop was organized as a satellite event of the ISMIR conference in 2020 and
20211.

4.1.3 Discussing the application of NLP methods to musical data

The application of natural languages techniques on musical data can be justified
by a variety of arguments. We will mention three of them, accompanied by counter-
arguments highlighting the need to perform this transfer of techniques with caution.

First, NLP and MIR share a number of common tasks including for instance con-
tent generation, style identification and style transfer. While these tasks have raised
a number of works in both fields, their evaluation however presumably feature no-
table differences, essentially due to the subjectivity inherent to most musical tasks.
While the evaluation of a number of NLP tasks also involves some subjectivity, the
availability of a variety of benchmarks, which associate a dataset with a particular
task, considerably facilitates the comparison of different representations and models.
This is the case for example for the task of machine translation e.g., French to English
for which available benchmarks feature pairs of sentences in both language. Al-
though more critical to evaluate, natural language generation can still be discussed
on localized objective aspects such as grammatical correctness. However, evaluat-
ing music generation or style transfer arguably relies on even more subjective criteria
including creativity and aesthetics, which complicates its automatization (Yang and
Lerch, 2020).

Secondly, the temporal nature of music, similarly to speech, promotes its rep-
resentation as sequence of elements, which happen to be the most commonly used
data structure to represent text (i.e., sequence of words, characters or ideograms).
Melodies can for instance be abstracted by sequences of pitch values, and harmonic
progressions as sequences of chord symbols. This similarity of data structures facili-
tates the application of NLP algorithms, and more generally of any sequence model,
on simple musical data. Beyond these simple cases however, representing music as
sequences of tokens appears to be much less trivial than text presumably because of
the complex temporal organization of the elements forming a musical score. First,
score elements in polyphonic music can overlap and occur simultaneously whereas
textual elements, characters or words, are organized as pure sequences. As NLP
models haven’t been conceived to process any kind of simultaneity between events,
a number of methods have been proposed to allow the representation of polyphonic
music as purely sequential structures. Pitch slicing for example consists in segment-
ing the musical surface into temporal chunks labelled by the corresponding set of
sounding pitches, which requires additional representations to distinguish notes
that are attacked from notes that are held from the past, as in the vector represen-
tation discussed by Hadjeres, Pachet, and Nielsen, 2017. Representing polyphonic
music by token sequences without any loss of information requires the use of time
dedicated tokens, e.g., time-shift tokens or relative score position tokens, which can
not be structurally distinguished from pitch-based tokens by NLP models. Secondly,

1https://sites.google.com/view/nlp4musa-2021

https://sites.google.com/view/nlp4musa-2021
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score elements are associated with strict positions in time. While this notion is nec-
essary to induce musical rhythm, it is absent in the text domain2.

Finally, a frequent argument for the application of NLP methods to musical con-
tent is the common association of music with a kind of language. This assimilation is
widely discussed in the musicology community (Cooke, 1990; Jackendoff, 2009).
As pointed out by Jackendoff, a major difference is that natural language conveys
propositional thoughts while music enhances affect, or emotion. It is worth high-
lighting that most modern NLP algorithms are based on deep learning architectures,
whose conception were driven by the goal of extracting semantics from sentences,
generally through a mechanism of progressive abstractions taking place in succes-
sive hidden layers of the network. Analogous abstraction mechanisms have shown
to improve the modeling of music in a wide range of tasks (Briot, Hadjeres, and Pa-
chet, 2019). It seems however that musical abstraction is unlikely to work the same
way as semantic extraction for which such models have been originally designed,
which questions in a general way the use of NLP tools to process musical data. This
question can be illustrated with the application of self-attention in the musical do-
main. While the performance of self-attention in modeling natural language is often
illustrated with its capacity to understand high-level grammatical concepts, the no-
tion of grammar, as it is found in natural language, is unlikely to reflect the way
music is structured. The nature of information that self-attention is able to model
in music seems still unclear and relatively unexplored to date. While the next sec-
tion details preliminary experiments on that topic, we hope to study this question
further through the PhD of D.-V.-T. Le and our starting collaboration with D. Her-
remans at AMAAI (Singapur) who recently had promising results on experiments
aiming at transposing the self-attention mechanism in the pitch domain (Guo, Kang,
and Herremans, 2023).

4.2 Contributions

The research project described in this chapter is more recent than those described in
Chapter 2 and 3. It started in 2019 and has led to three publications, all resulting
from student works that I have been co-supervising with M. Keller. These publi-
cations respectively focus on musical context vectors (Keller et al., 2021), musical
self-attention interpretation (Keller, Loiseau, and Bigo, 2021, Section 4.2.1) and mu-
sical tokenization (Kermarec, Bigo, and Keller, 2022, Section 4.2.2).

4.2.1 Interpreting self-attention in musical scores

Following research lines focusing on the effect of the self-attention mechanism on
musical data mentioned in Section 4.1.2, the present work aims at opening the Music
Transformer black box and evaluate the ability of the self-attention mechanism to
convey high-level musical information.

Following NLP initiatives aiming at studying self-attention (Reif et al., 2019) we
isolated self-attention information and submitted it to two selected MIR probing tasks
: composer classification and cadence detection. Figure 4.3 illustrates this process.

2Interestingly, the notion of rhythm commonly appears in poetry, which can in many senses be
considered somewhere in between music and natural language as highlighted by Jackendoff, 2009
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FIGURE 4.3: Pipeline used for the two probing tasks. The left part
illustrates the systematic representation of a MIDI sequence into a
set of self-attention values computed by a music transformer trained
on the MAESTRO dataset. The right part illustrates how a prob-
ing task is formulated as a classification problem from attention val-

ues (Keller, Loiseau, and Bigo, 2021).

First, a music transformer model (Huang et al., 2019) is trained on a dataset of mu-
sical works in MIDI format, the MAESTRO dataset (Hawthorne et al., 2019), which
have been represented as sequences of tokens. Once trained, any musical sequence
given as input to the model will give rise to the computation of a set of pairwise
self-attention values which are stored within self-attention matrices at each layer
of the network. This process can then be used to systematically represent a whole
musical dataset by abstract self-attention matrices. A logistic regression classifier
was then trained to estimate the composer of a set of musical sequences represented
by their self-attention matrices. We naturally do not aim at being competitive with
state-of-the-art composer classification methods, but rather measure the ability of
self-attention values to carry style information.

Figure 4.4 displays the accuracy of several binary composer classifiers for dif-
ferent size of sequences. The pairs of composers have been deliberately selected to
illustrate cases of variable difficulty. For instance, J. Haydn and W.A. Mozart are
known to be close in style, which make their distinction complex. In contrast, cou-
ples such as J.-S. Bach and F. Chopin or W.A. Mozart and C. Debussy are much easier
to separate. The results show that self-attention seem indeed to carry stylistic infor-
mation as shown by the easy couples having an accuracy above 0.5. Self-attention
values do not seem however to be able to distinguish difficult cases such as J. Haydn
and W.A. Mozart, independently of the size of the sequence.

As another illustration, Figure 4.5 displays the cumulated self-attention com-
puted at each sixteenth note of a score excerpt featuring a perfect authentic cadence.
The distribution exhibits attention peaks at strong preparation points of the cadence,
which seems to indicate the ability of self-attention to model some high-level struc-
tural information in musical scores. This is confirmed by a cadence detection ex-
periment on an annotated corpus of fugues from J.-S. Bach (Giraud et al., 2015). A
logistic regression classifier is trained on self-attention matrix representations, sim-
ilarly to the experiment on composer classification, and obtains an accuracy 15%
above the random classifier.

4.2.2 Investigating the expressiveness of tokenizations

Most strategies representing score content as sequences of tokens commonly en-
code pitch information explicitly, for example with tokens such as pitch:C3, which
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FIGURE 4.4: Binary composer classification performed on self-
attention matrices computed with the music transformer trained on

the MAESTRO dataset (Keller, Loiseau, and Bigo, 2021).

are afterward fed to a sequence model. This contrasts with a natural tendency of
human listeners to perceive and memorize musical sequences in terms of relative
pitches. This difference tends to limit the ability of machine learning models to ex-
ploit learned musical knowledge across different keys. This problem is generally
tackled by a data-augmentation procedure that consists in applying various trans-
positions to the training data, which consequently increases the resources required
to train the model. As an alternative, this work experiments a transposition invari-
able token representation which encodes pitch intervals and facilitates the uniform
transposition of musical knowledge learned by sequence models at any key without
any resort to data augmentation.

Figure 4.6 illustrates three tokenizations of a short musical excerpt. The top line
corresponds to the REMI tokenization (Huang and Yang, 2020). In the second one,
pitch tokens are replaced by pitch interval tokens, making this token sequence trans-
position invariant. The tokenization of the bottom line distinguishes pitch-interval
tokens between notes with consecutive (Horizontal Pitch Interval, HPI) and simulta-
neous onsets (Vertical Pitch Interval, VPI).

The expressiveness of these transposition invariant tokenizations have been stud-
ied in the frame of a binary composer classification task and an end-of-phrase de-
tection task. The GiantMIDI-Piano dataset (Kong et al., 2022) was used to train and
evaluate the composer classification model and the TAVERN dataset (Devaney et
al., 2015) was used for phrase end detection. We used logistic regression classifiers
on musical sequences represented as bag-of-tokens with TF-IDF weights3. Figure 4.7
compares the accuracy obtained by a set of logistic regression classifiers trained to
these tasks with various tokenizations.

3term frequency-inverse document frequency : counting the number of occurrences of each token
in the sequence and scaling the count by the frequency of the token in the corpus.
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FIGURE 4.5: Cumulated attention on successive offsets of bar 29 of
Fugue 2 of the Well-Tempered Clavier from Bach. A perfect authentic
cadence is annotated on beat 3 (last frame, blue). Other points of
prominent attention (first two frames, red and green) correspond to
important preparation points of the cadence (Keller, Loiseau, and Bigo,

2021).

The differences of accuracies show that the tasks vary in difficulty and that the
choice of tokenization can have dramatic impacts on the performance of the clas-
sifiers. REMI and Pitch Interval tokenizations have comparable performances for
composer classification, except for distinguishing F. Schubert and F. Chopin where
Pitch Interval tokenizations perform better. We hypothesize that the performance
of REMI for the two other classifications is partly due to the pitch range difference
between the repertoires of the composers, F. Liszt and L.v. Beethoven arguably em-
ploying larger pitch ranges than Bach and Mozart, which is by nature better encoded
by absolute pitch tokens. Finally, we see a significant out-performance of the spatial
pitch interval tokenization (that distinguishes horizontal and vertical pitch interval
tokens) for the end of phrase detection, presuming a promising ability of this repre-
sentation to model abstract musical knowledge.

4.3 Impacts

The NLP field is likely to show major progress in the near future, and to provide
innovating algorithms that will in turn be experimented in the musical domain, pur-
suing the tendency observed in the MIR community in the last decade. This research
axis is based on the hypothesis that the popularity of NLP models in the MIR field is
more due to their impressive performance on natural language than by an obvious
parallel between music and natural language4. One ambition of this project is there-
fore to encourage a reasoned use of NLP methods within our musical community.
Given the complexity of NLP-dedicated neural networks, we believe that a better

4A similar hypothesis could probably be formulated to comment the popularity of techniques com-
ing from image processing, such as convolutional neural networks, in the MIR community although
music and images strongly differ in nature.
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FIGURE 4.6: Three tokenizations of a musical sequence. The dotted
frames group tokens describing a same note (Kermarec, Bigo, and

Keller, 2022).
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FIGURE 4.7: Composer classification and end of phrase detection per-
formed by a logistic regression on TF-IDF token representations, with

5 different tokenizations (Kermarec, Bigo, and Keller, 2022).

understanding and control of these models can contribute to limit unnecessary ex-
pensive training procedures and limit energy consumption that is now recognized as
a major issue in machine learning. This goal meets a global initiative aiming at priv-
ileging light audio and music processing models (Douwes, Esling, and Briot, 2021).
Using musically expressive representations of data as proposed in Section 4.2.2 aims
at limiting the volume of training data necessary to set up MIR models, therefore
reducing time and energy consumption. Improving our understanding on how self-
attention behaves within musical data, as proposed in Section 4.2.1, promotes a use
and setting of transformer models with better intuitions regarding their capacities,
and therefore make research experiments converge towards accurate results with
limited experimental trainings.

Deep neural networks dedicated to NLP generally aim at modeling semantic
concepts through progressive layer abstractions. Using such network architectures
to model high-level musical concepts is therefore based on the questionable assump-
tion of analogous abstraction mechanisms between text and music. By trying to
identify limits of transferring techniques from NLP to MIR, we hope to propagate
the challenging idea that the design of music modeling neural architectures could be
driven by the very nature of music instead of being adapted from architectures that
have shown success in widely different domains, such as natural language or image.
Music models could be inspired by NLP models without necessary imitating them.
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As mentioned in the motivation of this research axis, we hope in the long-term
that this work will contribute to a general reflection around parallels between music
and language, that already has a long history in humanity fields relating to natural
language and musicology (Cooke, 1990; Jackendoff, 2009), and gain a clearer idea of
what the term "musical language" could mean.

4.4 Perspectives

The future directions of this research axis will be first addressed in the PhD of D.-
V.-T. Le that I am co-supervising with M. Keller. The interdisciplinary of this topic
encourages us in a first place to establish a crossed state-of-the-art gathering NLP
techniques, MIR tasks and symbolic music representations, as well as an overview
of how NLP techniques have been adapted in the musical domain to date. We hope
this overview can reach to a general survey paper on the uses of NLP techniques to
model music. We will then focus on the following specific tasks.

4.4.1 Tokenization strategies

Our research on tokenization has begun with the internship of M. Kermarec and is
continued by the PhD of D.-V.-T. Le. This topic is also central in the PhD of N. Fradet
(LIP6, Sorbonne Université) with whom a promising connection is currently being
established. This collaboration is currently facilitating the use and contribution to
the MidiTok python library, dedicated to music tokenization (Fradet et al., 2021).

Improving token type selection

The work done by M. Kermarec described in section 4.2.2 contributes to a wide open-
ing research area on the problem of musically expressive tokenization. A variety of
additional strategies are planned to be experimented to address this task.

The experiments by M. Kermarec showed that transposition invariant tokeniza-
tions, although promising for the generalization of musical knowledge regardless
of the key, brings limitations in style modeling due to the complete loss of register
information. To circumvent this limitation, a first perspective consists in adding pe-
riodic octave information tokens, for instance at every bar, thus providing an insight
to the model about the register of the surrounding notes.

Another alternative would consist in using a hybrid tokenization where a se-
lected set of notes would be encoded with their explicit pitch values while some
others would be encoded using interval tokens relatively to the first ones. The spa-
tial pitch interval tokenization presented in Section 4.2.2 provides a natural way to
perform such a distinction. Using only vertical pitch intervals to encode harmony
notes and preserving explicit pitch values for top notes would inform the model
about pitch register while allowing the learning of harmonic patterns up to transpo-
sition. Although this approach would limit the modeling of melodic features up to
transposition, it could presumably bring perspectives for harmonization tasks. The
choice of such a compromise remembers us the necessity to keep in mind targeted
applications when designing a model.
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While most of our tokenization perspectives so far have been thought to improve
pitch representation, music tokenization also faces challenging limitations regarding
the encoding into simple raw sequences of complex temporal information inherent
to music, such as precise timings and simultaneity. While not having yet precise
intuitions on how to improve these aspects, we hope this project will contribute to
address them.

Statistical super-tokens

Beyond the selection of a set of expressive tokens to form a vocabulary, the NLP field
has elaborated techniques consisting in enlarging vocabularies with super-tokens that
correspond to groups of consecutive tokens that frequently occur in a reference cor-
pus.

Given a reference corpus tokenized with one of the above methods, the byte-pair
encoding (BPE) algorithm by Sennrich, Haddow, and Birch, 2015 enumerates the k
most frequent token n-grams in this corpus, add them as super-tokens into the basis
vocabulary, then replace the corresponding n-grams by these super-tokens in the
corpus. As k grows, the BPE algorithm is likely to produces longer super-tokens,
which will make the vocabulary becoming more and more expressive, but also more
and more dependent on the reference corpus. At the training stage, this dependency
is likely to limit generalization capacities as well as creative outputs in the case of a
generative model. The choice of k will naturally depend on the model application
which is foreseen, but also on the size and variety of the reference corpus. Although
BPE seems to start drawing attention in MIR community as shown by the work
of Liu et al., 2022 as well as announced in upcoming improvements of the MidiTok
library5, its effects specifically on musical data has still not been the subject of any
study to our knowledge.

As an alternative to the BPE algorithm, the WordPieceModel algorithm by Schus-
ter and Nakajima, 2012, selects super-tokens depending on their abilities to opti-
mally improve the likelihood computed on the reference corpus encoded with these
super-tokens. While this method has been successfully applied in the field of speech
recognition, it hasn’t been experimented yet in the music domain. This part of the
PhD of D.-V.-T. Le will be facilitated by collaborations in the Magnet team, which
maintains the NLP mangoes library6 dedicated to embeddings building.

Words and music

Most NLP algorithms are designed to process sequences of tokens that in most time
happen to correspond to sequence of words. Segmenting English or French texts
into sequences is relatively convenient given the natural spacing between words in
text7.

On the musical domain, most uses of transformer models are using tokeniza-
tions, such as Midi-Like or REMI, in which tokens represent information at a level
comparable to that of MIDI events. Comparing tokenized text and tokenized music

5https://github.com/Natooz/MidiTok
6https://gitlab.inria.fr/magnet/mangoes
7Although specific rules are required to process special characters such as hyphens and apostrophes

https://github.com/Natooz/MidiTok
https://gitlab.inria.fr/magnet/mangoes
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highlights a gap of expressiveness between text tokens and music tokens as an iso-
lated word in text has probably good chances to convey more information than an
isolated MIDI event in a musical sequence. This contrast is surprisingly rarely men-
tioned in MIR despite an increasing use of transformer models processing Midi-like
tokens.

In this sense, we believe that the parallel between music and text might ben-
efit from comparing MIDI events to characters rather than words. Interestingly,
NLP includes some research initiatives aiming at tokenizing text at the character
level (Mielke et al., 2021) giving the potential to a model to generate any kind of
words, including words absent from the training corpus. Such generalization ability
might for instance let the model generate the unseen word faster which will be de-
duced from occurrences of fast, strong and stronger8. The natural counterpart is
that character level models are likely to produce nonexistent words. Modeling text
at the character level is particularly relevant for some Asian languages that have no
or few spaces between words. The elaboration of the WordPieceModel algorithm
mentioned above has actually been motivated by the need to segment Japanese and
Korean texts into sequences of tokens. We hope this project will contribute to encour-
age careful applications of "word models" on data which could hardly be compared
to words, and therefore promote the adaptation of character-level approaches that
seem more convenient to process musical information, at least when it is represented
by tokens at the level of MIDI events.

4.4.2 Transfer learning

Transfer learning consists in pre-training a model on a general task with a large set
of unlabeled data before fine-tuning it for the purpose of a specific downstream task
where a smaller set of data is available. This technique has enabled major break-
throughs in NLP with the pre-training of models such as BERT (Devlin et al., 2019)
or GPT (Radford et al., 2018). Transfer learning has been recently investigated in
symbolic music data processing (Wang and Xia, 2021). Starting from this recent
research, we hope to measure the benefit of transfer learning in different tasks in
symbolic music analysis and generation.

Transfer learning is based on the hypothesis of common concepts shared by data
of a domain. It can for instance benefit to a set of texts that are written in the same
natural language and in which concepts such as grammatical relations will be appli-
able for any data. It can also benefit to a set of images that tend to describe the same
world, composed by objects that will ultimately be grouped under abstract classes,
such as animals or vehicles. Applying transfer learning to music questions us on
what is shared by musical works. Distant musical styles, say for instance twelve-
tone and classical music, might probably share too little in common to jointly facil-
itate the learning of a universal sense of music, comparable to what is performed
in image processing for instance. Musical transfer learning therefore contributes to
question us on the existence of a musical language.

8This property can also be achieved with word level tokenizations using token segmenters such as
Byte-Pair Encoding.
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Chapter 5

Conclusions

Music begins where the possibilities of language end.
— Jean Sibelius

The perspective of my different research axes have been detailed in the closing
sections of Chapters 2, 3 and 4. This conclusion chapter first summarizes the research
described in the manuscript. We will then discuss the analogy between music and
language which was used as common thread in the manuscript, and put this analogy
in parallel with the use of symbolic spaces in music theory. The last section discusses
possible future evolutions of the role of AI in music composition.

5.1 Summary

This section has been written with the help of ChatGPT 31, which was asked to translate
and summarize the French content written on page vi of this manuscript. This experiment
illustrates the "punctual" use of an AI tool in the writing of a document, in analogy with the
composition of a musical piece, as discussed further in Section 5.3.

This manuscript described my main research axes around the general theme of
modeling the language of musical scores, in the field of Musical Information Re-
trieval (MIR). The manuscript was organized around three chapters, respectively
dealing with classical repertoire, guitar tablatures in modern popular repertoire, and
the application of Natural Language Processing techniques in the musical field.

Chapter 2 focused on algorithms to analyze classical music. It covered PhD
works of L. Feisthauer and L. Couturier on the modelling of music structure and
texture that I have co-supervised. I presented a method for identifying cadences in
sheet music using a set of descriptors. The second research axis focus on the model-
ing of symbolic texture in sheet music for piano. Finally, I presented methods for the
structural segmentation of sheet music according to the general scheme of Sonata
Form. The perspectives of this axis mainly focus on texture modelling in the frame
of the PhD of L. Couturier, in particular formalizing distances between textures and
using these models for computer-assisted composition and style transfer.

Chapter 3 focused on the modelling of guitar tablatures in computer-assisted
music analysis and composition in the popular modern repertoire. The chapter high-
lighted the internship work of J. Cournut and D. Régnier, as well as the present PhD
work of A. D’Hooge that I have been, and that I am co-supervising. This research

1https://openai.com/blog/chatgpt/

https://openai.com/blog/chatgpt/
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is part of the ANR project TABASCO that I am coordinating. The chapter detailed
the development of tools to aid in the use of MySongBook data for machine learn-
ing tasks, as well as methods for automatic identification of the musical function
of guitar tabs, and a method for continuing rhythmic guitar textures through tex-
ture imitation. The research perspectives in this axis pertain to the ANR TABASCO
project, which aims to develop AI-based tools to assist in composing music for gui-
tar. It will include a study of guitar composition practices in modern popular music,
conducted in collaboration with musicologist B. Navarret. The goal is to improve
our understanding of the role of notation software in the composition process in this
repertoire and identify software features that could lead to innovations in composi-
tion practices. The project will then focus on creating and evaluating these features,
with a particular emphasis on composing rhythmic guitar parts and modeling guitar
techniques to provide fine control over the expressiveness of the music. The project
will also include open-source contributions to make it easier for the MIR community
to work with guitar tablatures.

Chapter 4 discusses the use of Natural Language Processing techniques in mod-
eling musical scores. The study is motivated by the increasing use of algorithms de-
signed for text in music research and aims to evaluate the relevance, potential, and
limitations of bringing these two fields together. The first contribution of the chap-
ter is the study of how the principle of mutual attention applies to musical scores,
and the second contribution is about tokenization which is a method of representing
musical scores in the form of a sequence of atomic elements to allow the direct appli-
cation of NLP algorithms such as the transformer. The study also includes an eval-
uation of token expressiveness through two musical tasks: composer classification
and cadence detection. Perspectives of this research axis include the identification
of a map of uses in this field and to focus on the sequential representation of musical
content, tokenization and the use of recent algorithms in music, such as WordPiece
and Byte Pair Encoding. The project also aims to experiment with the limits of trans-
fer learning in music and contribute to a general epistemological reflection on the
similarities and differences between music and natural language. The research per-
spectives of this project mainly correspond to the axes anticipated for D.-V.-T. Le’s
thesis.

5.2 Music, language, space, computer science

The inherent complexity of music seems to encourage theorists to refer to intuitive
concepts which are not necessarily relating to music in the first place. The lan-
guage analogy was used as a common thread to present various research in this
manuscript. Interestingly, natural language might not be the only abstract notion
used by music theorists for this purpose. This section puts in parallel the notions
of language and space, which are metaphorically, although differently, employed by
theorists to bring some intuitions in the description of some complex components
of music such as expressiveness and harmony. My intuition is that the use of such
analogies reveals our lack of terms to describe the complexity of music, of its struc-
ture and of its effect on the listener.
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5.2.1 Music and language

While the language analogy is an essential component of our reflections on the use
of NLP techniques for music (Chapter 4), the very notion of language is presumably
playing a much less central role for the research focusing on the classical repertoire
(Chapter 2) and on guitar tablatures (Chapter 3). Pursuing this analogy was however
possible due to the various and endless parallels that can be drawn between the two
domains.

Music indeed seems to be associated with the notion of language for a variety of
reasons. In the common sphere, this association for instance refers to a transmission
act from the composer to the listener, or simply the fact that a music can potentially
be appreciated in the same way by people from different cultures or languages. Be-
low a general view of music as a language, musical data, whether from scores or
from performances, include a variety of concrete features that can easily be put in
parallel with linguistic features. Musical cadences for instance are often described as
formula indicating end of phrases in musical scores. The notion of musical language
also questions cross concepts such as musical syntax or musical grammars, that have
led to reference theories such as the Generative Theory of Tonal Music by Lerdahl and
Jackendoff (1983).

But as mentioned in Section 4.1.3, natural language and music also have fun-
damental differences, one of which being that the former conveys "propositional"
or "conceptual" thoughts (Jackendoff, 2009), while the latter is commonly described
as expressing emotions (Cooke, 1990), or more generally affects (Jackendoff and Ler-
dahl, 2006). In his book The Language of Music, Cooke (1990) suggests that associating
music with a language helps us to share our understanding of the artist’s intention2.

In the next section, I’ll mention the use of another intuitive concept in music
representations, the notion of space, which was the focus of my PhD thesis (Bigo,
2013).

5.2.2 Music and space

A wide variety of spatial representations have been elaborated by music theorists
to facilitate the description of complex aspects of music such as tonality and chord
relationships (Mazzola, 2012; Tymoczko, 2010). Figure 5.1 illustrates three such rep-
resentations. The Tonnetz, first described by the mathematician Euler (1739), rep-
resents acoustic pitch consonance by graph neighborhood. The spiral array model
of Chew (2000), includes concentric helices highlighting in a same space relations
shared by pitch-classes, triads and keys. The orbifold T2/S3 by Callender, Quinn,
and Tymoczko (2008) represents voice-leading relations between three-note chord
types in a cone.

Such spatial representations have provided tangible intuitions on a variety of
tasks in music theory, analysis and composition. A movement in a space, which is a
concept we are confronted with every day, is indeed easier to grasp than the physics
and combinatorics that characterize pitches and chords. Intuitive representations

2Cooke actually generalizes this hypothesis to analogies between arts in general.
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(A) (B) (C)

FIGURE 5.1: Three uses of space to represent a complex aspect of
music. (A) The Speculum Musicum representing physical consonance.
(B) The Spiral Array representing relations between pitch-classes, tri-
ads and keys. (C) The orbifold T2/S3 representing voice-leading re-
lations between three-note chord types. Figures from Euler (1739),

Chew (2000) and Callender, Quinn, and Tymoczko (2008).

also promote original experiments leading to unexpected results. For instance, asso-
ciating a musical sequence with a spatial trajectory within expressive music repre-
sentation spaces suggests some natural transformations such as rotations and trans-
lations, that provide fruitful and original approaches to composition (Bigo et al.,
2015). As a second example, representing pitch-class set collections as geometric
simplicial complexes has incited us to apply the principle of filtration, inspired from
the field of persistent homology in mathematics, to bring some original approaches
to music similarity (Bigo and Andreatta, 2019). Figure 5.2 illustrates the first bars of
the four-voice chorale BWV 254 from J.-S. Bach. The left most box indicates that the
pitch-class F is the only one to sound more than 60% of the time in this extract. Sim-
ilarly, the second box indicates that {F,A} is the only pair of pitch-classes that sound
simultaneously more than 45% of the time. Preliminary experiments seem to show
that filtration levels and their associated pith-class content, considered up to trans-
position, highlight some style related information (Bigo and Andreatta, 2019). I hope
this approach could bring a promising point of view for the processing and analysis
of similarity at different scales of representations, which is the central question of
the MUSISCALE action of the MADICS GDR in which I am involved.

I will conclude this parenthesis on spatial representations of music by highlight-
ing that although music relates to the concepts of space and language in rather dif-
ferent ways, some musical features that are commonly used to justify the linguistic
aspect of music, for example keys and chord progressions (tonal language and har-
monic language) are interestingly also described through well-defined geometrical
spaces (key spaces and chord spaces) due to their combinatorial properties.
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FIGURE 5.2: Representation of four levels of pitch-class set filtration
in an extract of a four-voices chorale by J.-S. Bach. On the left side,
only the most prevalent pitch-class sets are represented. The most
right level includes the whole set of pitch-class sets included in the

extract.
(Bigo and Andreatta, 2019)

5.2.3 Abstract analogies and dedicated computer science

While used in different contexts, both previous analogies have in common to open
deep perspectives in music modeling when approached with computational meth-
ods, thanks to the availability of powerful computational tools dedicated to both
concepts. On the one hand, the field of spatial computing (Giavitto et al., 2004) aims
at taking advantage of our intuitive relation to space, to provide a framework to
formulate complex data structures and algorithms in spatial terms with a number
of applications to process biological (Giavitto and Michel, 2003) and musical (Bigo,
2013) data. On the other hand, the field of Natural Language Processing provides
tools to process and analyze large amount of natural language data, with a vari-
ety of applications ranging from automatic translation to text generation (Jurafsky
and Martin, 2014). Spatial computing and Natural Language Processing allow the
application to musical data of powerful algorithms, although initially thought for
different kind of data and therefore provide original approaches to music analysis
and composition.

The availability of powerful computational tools can however make it tempting
to simplify the complexity of musical information to facilitate their application. Lim-
iting these simplifications and keeping in mind the singular nature of music when
using these tools brings promising challenges in our research area. Pursuing the re-
flection on the use of powerful computational tools in the musical domain, the next
section discusses the use of artificial intelligence tools in music composition.

5.3 Human-centered computer music

Artificial intelligence has a growing impact on multiple aspects of our daily lives
and already succeeds in replacing the human in some tasks such as driving a car or
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identifying faces on a picture. Such breakthroughs legitimately lead us to question
the potential of this technical shift to converge towards the replacement of human in
other tasks, including in the musical domain. In the context of music composition,
trying to presage future impacts of AI seems however complicated due to the variety
of contexts in which music is involved nowadays. In this closing section, we discuss
AI music composition by distinguishing functional and unfunctional music.

5.3.1 Functional music

AI techniques have already succeeded in replacing the human composer for a par-
ticular category of music, which is intended to be played in the background of some
stream videos3 (documentary, tutorials, humorous, advertising), in which music
with limited creativity sometimes seems acceptable due to its background role. This
of course only concerns a part of this type of videos, as documentary and advertising
music can also arouse the composition of amazing pieces of arts. For instance, the
Jukedeck4 company used to provide copyright-free songs generated at the click of
a button, only requiring from the video maker to select a musical style and a dura-
tion. Jukedeck generated pieces have successfully been adopted as backtrack music
of YouTube videos by a large community of video makers.

An important aspect of music in this category is that it seems expected to fulfil a
precise function5. I believe that this notion of function fulfillment plays an essential
role in the success of AI to autonomously generate such music. First, the goals of
functional music are not necessarily related to the music itself, which presumably
makes it less demanding in terms of creativity. This probably also contributes to
make the absence of human in its composition more acceptable by the audience,
which in most cases will not even be aware of this fact. Finally, the generation of
functional music seems more compatible with well-defined problem-solving tasks
for which machine learning algorithms have originally been conceived for. This
generally questions the ability of AI to be creative rather than performant and which
is widely discussed in the community (Esling and Devis, 2020; Gioti, 2021).

Pursuing this intuition, I feel that the audience is likely to welcome in the next
years generated music addressing other types of expectations associated with spe-
cific listening contexts such as sport performance, intellectual concentration, relax-
ation, health therapy, and to some extent dancing although this last objective seems
more challenging6.

5.3.2 Unfunctional music

On the other hand, the idea of going to a rock/classical concert in which the per-
formed songs/pieces would have been composed without any human intervention
seems much more unlikely to me, primarily because this might not be of interest of
the (human) audience, however credible the generation might be7. My feeling is that

3For example: https://www.youtube.com/watch?v=T7RLgpwwRsg.
4Jukedeck has been bought out by ByteDance (TokTok) in 2019.
5The term functional music was defined by Gaston (1958).
6It might be more likely to presage that generated dance music will arouse new dancing styles

rather than being used in existing ones.
7This might however be different is the audience is not aware that the composition did not involve

any human intervention.

https://www.youtube.com/watch?v=T7RLgpwwRsg
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this category of music, which is composed for entertainment and pleasure and that
we could qualify as unfunctional, will continue to require a human "in the command"
of its creation process to reach a substantial audience. This also naturally applies to
a part of functional music discussed in the previous paragraph.

Despite this presumed necessity of a human control at the top of the process, I
nevertheless believe that AI is going to play increasing, various, and probably un-
expected, roles within the act of composing unfunctional music. While composition
processes arguably vary across composers and musical styles, it seems reasonable to
consider that they often involve a set of more or less ordered and interacting sub-
tasks such as for instance melody finding, harmonization, orchestration, notation or
mixing. My intuition is that AI approaches are particularly promising when limited
to one of these tasks. First, in contrast with full-stack generation, composition sub-
tasks seem more easy to formalize as computational problems, and also to evaluate,
as they are generally more precisely defined. The rhythm-guitar tablature continu-
ation by texture imitation described in Section 3.3.5 is an example of well-defined
problem whose formalization and evaluation appear much better determined than
the open-ended creation of a whole musical piece. Secondly, addressing a compo-
sition subtask might presumably benefit from results in computational music anal-
ysis, which are generally limited to specific musical aspects such as musical texture
as described in Section 2.3.2. Finally, punctual AI interventions appear promising
in situations where the composer does not feel equally skilled, inspired, or simply
interested, in each of these subtasks.

Our participation to the AI Song Contest in 2020 (Huang et al., 2020) follows this
line by addressing the composition of a whole musical piece as a combination of
subtasks alternatively involving the human and the computer (Micchi et al., 2021).
This experiment however showed us that addressing punctual composition sub-
tasks brings the challenge of integrating these tools within the whole composition
process (Deruty et al., 2022). Increasingly sophisticated Digital Audio Workstations
(DAWs) and music notation software, which have become central tools in many
composition acts, seem to have the potential, in terms of techniques and interfaces,
to address this challenge. This will however require substantial composition prac-
tice studies aiming at identifying the precise form under which such tools should be
made available to the composer during its composition act.

To conclude on punctual AI interventions, I will somehow rudely attempt a par-
allel between the composition of a musical piece and the writing of a technical docu-
ment such as the present one, in which the different sections naturally vary in terms
of creativity. Section 5.1 is probably one of the less creative sections as it aims at
summarizing the information that has been previously detailed in the manuscript.
The AI tool ChatGPT was therefore used for translation and summarization of the
French summary of page vi, after which some human post-processing was done to
correct possible mistakes and make the summary fit better into a conclusion chapter.
This post-processing step, which consists in correcting and integrating the generated
content in a wider context, could easily be compared to what a composer could do
with a generated melody as described for instance by (Ben-Tal, Harris, and Sturm,
2021). Using ChatGPT to assist the writing of a committed discussion section, as
the present one, seems however more critical unless the proposed ideas have been
mentioned in the past.





77

List of publications

Agres, Kat, Louis Bigo, and Dorien Herremans (2019). “The impact of musical struc-
ture on enjoyment and absorptive listening states in trance music”. In: Music
and Consciousness 2 : Worlds, Practices, Modalities. Oxford University Press. URL:
https://hal.archives-ouvertes.fr/hal-02024603.

Agres, Kat, Louis Bigo, Dorien Herremans, and Darrell Conklin (2016). “The Effect
of Repetitive Structure on Enjoyment in Uplifting Trance Music”. In: International
Conference on Music Perception and Cognition. San-Francisco, United States. URL:
https://hal.science/hal-01798672.

Agres, Kat, Dorien Herremans, Louis Bigo, and Darrell Conklin (2017). “Harmonic
Structure Predicts the Enjoyment of Uplifting Trance Music”. In: Frontiers in Psy-
chology 7. DOI: 10.3389/fpsyg.2016.01999. URL: https://hal.science/hal-
01798668.

Allegraud, Pierre, Louis Bigo, Laurent Feisthauer, Mathieu Giraud, Richard Groult,
Emmanuel Leguy, and Florence Levé (2019). “Learning Sonata Form Structure
on Mozart’s String Quartets”. In: Transactions of the International Society for Music
Information Retrieval (TISMIR) 2.1, pp. 82–96. DOI: 10.5334/tismir.27. URL:
https://hal.archives-ouvertes.fr/hal-02366640.

Bigo, Louis (2013). “Représentations symboliques musicales et calcul spatial”. The-
ses. Université Paris-Est. URL: https://theses.hal.science/tel-01326827.

Bigo, Louis and Moreno Andreatta (2014). “A Geometrical Model for the Analysis
of Pop Music ”. In: Sonus. Sonus 35.1, pp. 36–48. URL: https://hal.archives-
ouvertes.fr/hal-01263324.

— (2015). “Topological Structures in Computer-Aided Music Analysis”. In: Com-
putational Music Analysis. Ed. by David Meredith. Springer, pp. 57–80. DOI: 10.
1007/978-3-319-25931-4\_3. URL: https://hal.science/hal-01263349.

— (2017). “Towards Structural (Popular) Music Information Research”. In: European
Music Analysis Conference (EuroMAC 2017). Strasbourg, France. URL: https://
hal.archives-ouvertes.fr/hal-01517513.

— (2019). “Filtration of Pitch-Class Sets Complexes”. In: 7th International Conference,
MCM 2019. Montiel M., Gomez-Martin F., Agustín-Aquino O. (eds) Mathematics
and Computation in Music. MCM 2019. Lecture Notes in Computer Science, vol
11502. Springer, Cham. Madrid, Spain, pp. 213–226. DOI: 10.1007/978-3-030-
21392-3\_17. URL: https://hal.archives-ouvertes.fr/hal-02153236.

Bigo, Louis and Darrell Conklin (2015). “A viewpoint approach to symbolic music
transformation”. In: 11th International Symposium on Computer Music Multidisci-
plinary Research (CMMR) 2015. Plymouth, United Kingdom. URL: https://hal.
science/hal-01798678.

— (2016). Four-part chorale transformation by harmonic template voicing. Research Re-
port. Universidad del País Vasco. URL: https://hal.science/hal-01802235.

https://hal.archives-ouvertes.fr/hal-02024603
https://hal.science/hal-01798672
https://doi.org/10.3389/fpsyg.2016.01999
https://hal.science/hal-01798668
https://hal.science/hal-01798668
https://doi.org/10.5334/tismir.27
https://hal.archives-ouvertes.fr/hal-02366640
https://theses.hal.science/tel-01326827
https://hal.archives-ouvertes.fr/hal-01263324
https://hal.archives-ouvertes.fr/hal-01263324
https://doi.org/10.1007/978-3-319-25931-4\_3
https://doi.org/10.1007/978-3-319-25931-4\_3
https://hal.science/hal-01263349
https://hal.archives-ouvertes.fr/hal-01517513
https://hal.archives-ouvertes.fr/hal-01517513
https://doi.org/10.1007/978-3-030-21392-3\_17
https://doi.org/10.1007/978-3-030-21392-3\_17
https://hal.archives-ouvertes.fr/hal-02153236
https://hal.science/hal-01798678
https://hal.science/hal-01798678
https://hal.science/hal-01802235


78 List of publications

Bigo, Louis, Jean-Louis Giavitto, and Antoine Spicher (2011). “Building Topologi-
cal Spaces for Musical Objects”. In: Mathematics and Computation in Music. cote
interne IRCAM: Bigo11c. Paris, France, pp. 1–1. URL: https://hal.archives-
ouvertes.fr/hal-01161290.

— (2013). “Spatial Programming for Musical Transformations and Harmonization”.
In: Spatial Computing Workshiop (SCW). AAMAS satellite workshop W09. Saint-
Paul, Minesota, United States, p. 9–16. URL: https://hal.science/hal-00925767.

Bigo, Louis and Antoine Spicher (2014). “Self-Assembly of Musical Representations
in MGS”. In: International Journal of Unconventional Computing 10.3, pp. 219–236.
URL: https://hal.science/hal-02903099.

Bigo, Louis, Antoine Spicher, and Olivier Michel (2011a). “DIFFÉRENTES UTILI-
SATIONS DE L’ESPACE EN MUSIQUE À L’AIDE D’UN LANGAGE DE PRO-
GRAMMATION DÉDIÉ AU CALCUL SPATIAL”. In: Journées d’Informatique Mu-
sicale. Saint-Etienne, France. URL: https://hal.science/hal-03104801.

Bigo, Louis, Antoine Spicher, and Olivier J.J. Michel (2010). “Spatial Programming
for Music Representation and Analysis”. In: Spatial Computing Workshop 2010.
cote interne IRCAM: Bigo10b. Budapest, Hungary, pp. 1–1. URL: https://hal.
archives-ouvertes.fr/hal-01161288.

— (2011b). “Différentes utilisations de l’espace en musique à l’aide d’un langage
de programmation dédié au calcul spatial”. In: Journées d’Informatique Musicale
2011. cote interne IRCAM: Bigo11a. St-Etienne, France, pp. 1–1. URL: https://
hal.archives-ouvertes.fr/hal-01157093.

Bigo, Louis, Jérémie Garcia, Antoine Spicher, and Wendy E. Mackay (2012). “Paper-
Tonnetz: Music Composition with Interactive Paper”. In: Sound and Music Com-
puting. Copenhague, Denmark. URL: https://hal.inria.fr/hal-00718334.

Bigo, Louis, Jean-Louis Giavitto, Moreno Andreatta, Olivier Michel, and Antoine
Spicher (2013). “Computation and Visualization of Musical Structures in Chord-
Based Simplicial Complexes”. In: MCM 2013 - 4th International Conference Mathe-
matics and Computation in Music. Ed. by Jason Yust, Jonathan Wild, and John Ash-
ley Burgoyne. Vol. 7937. Lecture notes in computer science. Montreal, Canada:
Springer, pp. 38–51. DOI: 10 . 1007 / 978 - 3 - 642 - 39357 - 0 \ _3. URL: https :
//hal.archives-ouvertes.fr/hal-00925748.

Bigo, Louis, Antoine Spicher, Daniele Ghisi, and Moreno Andreatta (2014). “Spatial
Transformations in Simplicial Chord Spaces”. In: Proceedings ICMC|SMC|2014.
cote interne IRCAM: Bigo14b. Athens, Greece, pp. 1112–1119. URL: https://
hal.archives-ouvertes.fr/hal-01161081.

Bigo, Louis, Daniele Ghisi, Antoine Spicher, and Moreno Andreatta (2015). “Repre-
sentation of Musical Structures and Processes in Simplicial Chord Spaces”. In:
Computer Music Journal 39.3, pp. 9 –24. DOI: 10.1162/COMJ\_a\_00312. URL:
https://hal.archives-ouvertes.fr/hal-01263299.

Bigo, Louis, Mathieu Giraud, Richard Groult, Nicolas Guiomard-Kagan, and Flo-
rence Levé (2017). “Sketching Sonata Form Structure in Selected Classical String
Quartets”. In: ISMIR 2017 - International Society for Music Information Retrieval
Conference. Suzhou, China. URL: https://hal.archives- ouvertes.fr/hal-
01568703.

Bigo, Louis, Laurent Feisthauer, Mathieu Giraud, and Florence Levé (2018). “Rele-
vance of musical features for cadence detection”. In: International Society for Music

https://hal.archives-ouvertes.fr/hal-01161290
https://hal.archives-ouvertes.fr/hal-01161290
https://hal.science/hal-00925767
https://hal.science/hal-02903099
https://hal.science/hal-03104801
https://hal.archives-ouvertes.fr/hal-01161288
https://hal.archives-ouvertes.fr/hal-01161288
https://hal.archives-ouvertes.fr/hal-01157093
https://hal.archives-ouvertes.fr/hal-01157093
https://hal.inria.fr/hal-00718334
https://doi.org/10.1007/978-3-642-39357-0\_3
https://hal.archives-ouvertes.fr/hal-00925748
https://hal.archives-ouvertes.fr/hal-00925748
https://hal.archives-ouvertes.fr/hal-01161081
https://hal.archives-ouvertes.fr/hal-01161081
https://doi.org/10.1162/COMJ\_a\_00312
https://hal.archives-ouvertes.fr/hal-01263299
https://hal.archives-ouvertes.fr/hal-01568703
https://hal.archives-ouvertes.fr/hal-01568703


List of publications 79

Information Retrieval Conference (ISMIR 2018). Paris, France. URL: https://hal.
archives-ouvertes.fr/hal-01801060.

Conklin, Darrell and Louis Bigo (2015). “Trance generation by transformation”. In:
8th International Workshop on Machine Learning and Music. Vancouver, Canada.
URL: https://hal.science/hal-01798675.

Cournut, Jules, Louis Bigo, Mathieu Giraud, and Nicolas Martin (2020). “Encodages
de tablatures pour l’analyse de musique pour guitare”. In: Journées d’Informatique
Musicale (JIM 2020). Strasbourg (en ligne), France. URL: https://hal.archives-
ouvertes.fr/hal-02934382.

Cournut, Jules, Louis Bigo, Mathieu Giraud, Nicolas Martin, and David Régnier
(2021). “What are the most used guitar positions?” In: International Conference on
Digital Libraries for Musicology (DLfM 2021). Online, United Kingdom, pp. 84–92.
DOI: 10.1145/3469013.3469024. URL: https://hal.archives-ouvertes.fr/
hal-03279863.

Couturier, Louis, Louis Bigo, and Florence Levé (2022a). “A dataset of symbolic tex-
ture annotations in Mozart piano sonatas”. In: International Society for Music In-
formation Retrieval Conference (ISMIR 2022). Bengaluru, India.

— (2022b). “Annotating Symbolic Texture in Piano Music: a Formal Syntax”. In:
Sound and Music Computing. Saint-Etienne, France. URL: https://hal.archives-
ouvertes.fr/hal-03631151.

Feisthauer, Laurent, Louis Bigo, and Mathieu Giraud (2019). “Modeling and learn-
ing structural breaks in sonata forms”. In: International Society for Music Informa-
tion Retrieval Conference (ISMIR 2019). Delft, Netherlands. URL: https://hal.
archives-ouvertes.fr/hal-02162936.

Feisthauer, Laurent, Louis Bigo, Mathieu Giraud, and Florence Levé (2020). “Esti-
mating keys and modulations in musical pieces”. In: Sound and Music Comput-
ing Conference (SMC 2020). Simone Spagnol and Andrea Valle. Torino, Italy. URL:
https://hal.archives-ouvertes.fr/hal-02886399.

Garcia, Jérémie, Louis Bigo, Antoine Spicher, and Wendy E. Mackay (2013). “Pa-
perTonnetz: Supporting Music Composition with Interactive Paper”. In: Extend
Abstract on Human Factors in Computing Systems. Paris, France. URL: https://
hal.inria.fr/hal-00837640.

Karystinaios, Emmanouil, Corentin Guichaoua, Moreno Andreatta, Louis Bigo, and
Isabelle Bloch (2020). “Musical genre descriptor for classification based on Ton-
netz trajectories”. In: Journées d’Informatique Musicale. Strasbourg, France. URL:
https://hal.science/hal-03031287.

Keller, Mikaela, Gabriel Loiseau, and Louis Bigo (2021). “What Musical Knowledge
Does Self-Attention Learn?” In: Workshop on NLP for Music and Spoken Audio
(NLP4MuSA 2021). Online, France. URL: https://hal.archives- ouvertes.
fr/hal-03419236.

Keller, Mikaela, Kamil Akesbi, Lorenzo Moreira, and Louis Bigo (2021). “Techniques
de traitement automatique du langage naturel appliquées aux représentations
symboliques musicales”. In: JIM 2021 - Journées d’Informatique Musicale. Virtual,
France. URL: https://hal.archives-ouvertes.fr/hal-03279850.

Kermarec, Mathieu, Louis Bigo, and Mikaela Keller (2022). Improving Tokenization Ex-
pressiveness With Pitch Intervals. 23rd International Society for Music Information
Retrieval Conference (ISMIR 2022), Late-Breaking Demo Session. Poster. URL:
https://hal.archives-ouvertes.fr/hal-03877642.

https://hal.archives-ouvertes.fr/hal-01801060
https://hal.archives-ouvertes.fr/hal-01801060
https://hal.science/hal-01798675
https://hal.archives-ouvertes.fr/hal-02934382
https://hal.archives-ouvertes.fr/hal-02934382
https://doi.org/10.1145/3469013.3469024
https://hal.archives-ouvertes.fr/hal-03279863
https://hal.archives-ouvertes.fr/hal-03279863
https://hal.archives-ouvertes.fr/hal-03631151
https://hal.archives-ouvertes.fr/hal-03631151
https://hal.archives-ouvertes.fr/hal-02162936
https://hal.archives-ouvertes.fr/hal-02162936
https://hal.archives-ouvertes.fr/hal-02886399
https://hal.inria.fr/hal-00837640
https://hal.inria.fr/hal-00837640
https://hal.science/hal-03031287
https://hal.archives-ouvertes.fr/hal-03419236
https://hal.archives-ouvertes.fr/hal-03419236
https://hal.archives-ouvertes.fr/hal-03279850
https://hal.archives-ouvertes.fr/hal-03877642


80 List of publications

Micchi, Gianluca, Louis Bigo, Mathieu Giraud, Richard Groult, and Florence Levé
(2021). “I Keep Counting: An Experiment in Human/AI Co-creative Songwrit-
ing”. In: Transactions of the International Society for Music Information Retrieval (TISMIR).

Régnier, David, Nicolas Martin, and Louis Bigo (2021). “Identification of rhythm
guitar sections in symbolic tablatures”. In: International Society for Music Informa-
tion Retrieval Conference (ISMIR 2021). Online, United States. URL: https://hal.
archives-ouvertes.fr/hal-03335822.

https://hal.archives-ouvertes.fr/hal-03335822
https://hal.archives-ouvertes.fr/hal-03335822


81

Bibliography

Agostini, Andrea and Daniele Ghisi (2015). “A max library for musical notation and
computer-aided composition”. In: Computer Music Journal 39.2, pp. 11–27.

Ariga, Shunya, Satoru Fukayama, and Masataka Goto (2017). “Song2Guitar: A Difficulty-
Aware Arrangement System for Generating Guitar Solo Covers from Polyphonic
Audio of Popular Music.” In: International Society for Music Information Retrieval
Conference (ISMIR 2017), pp. 568–574.

Assayag, Gérard and Shlomo Dubnov (2004). “Using Factor Oracles for Machine
Improvisation”. In: Soft Computing 8.9, pp. 604–610. DOI: 10.1007/s00500-004-
0385-4.

Barbancho, Ana M, Anssi Klapuri, Lorenzo J Tardón, and Isabel Barbancho (2011).
“Automatic transcription of guitar chords and fingering from audio”. In: IEEE
Transactions on Audio, Speech, and Language Processing 20.3, pp. 915–921.

Bell, Adam Patrick (2018). Dawn of the DAW: The studio as musical instrument. Oxford
University Press.

Ben-Tal, Oded, Matthew Tobias Harris, and Bob LT Sturm (2021). “How Music AI Is
Useful: Engagements with Composers, Performers and Audiences”. In: Leonardo
54.5, pp. 510–516.

Bimbot, Frédéric, Emmanuel Deruty, Gabriel Sargent, and Emmanuel Vincent (2016).
“System & contrast: a polymorphous model of the inner organization of struc-
tural segments within music pieces”. In: Music Perception: An Interdisciplinary
Journal 33.5, pp. 631–661.

Blombach, Ann (1987). “Phrase and Cadence: A Study of Terminology and Defini-
tion.” In: Journal of Music Theory Pedagogy 1, 225–51.

Bogdanov, Dmitry et al. (2013). “Essentia: An audio analysis library for music infor-
mation retrieval”. In: International Society for Music Information Retrieval Conference
(ISMIR 2013).

Bresson, Jean, Carlos Agon, and Gérard Assayag (2011). “OpenMusic: visual pro-
gramming environment for music composition, analysis and research”. In: Pro-
ceedings of the 19th ACM international conference on Multimedia, pp. 743–746.

Briot, Jean-Pierre, Gaëtan Hadjeres, and François-David Pachet (2019). Deep learning
techniques for music generation. Springer. ISBN: 978-3-319-70162-2.

Briot, Jean-Pierre and François Pachet (2020). “Deep learning for music generation:
challenges and directions”. In: Neural Computing and Applications 32.4, pp. 981–
993.

Brooks, Frederick P, AL Hopkins, Peter G Neumann, and William V Wright (1957).
“An experiment in musical composition”. In: IRE Transactions on Electronic Com-
puters 3, pp. 175–182.

Burns, Anne-Marie and Marcelo M Wanderley (2006). “Visual methods for the re-
trieval of guitarist fingering”. In: International Conference on New Interfaces for Mu-
sical Expression (NIME 2006). Citeseer, pp. 196–199.

https://doi.org/10.1007/s00500-004-0385-4
https://doi.org/10.1007/s00500-004-0385-4


82 Bibliography

Callender, Clifton, Ian Quinn, and Dmitri Tymoczko (2008). “Generalized voice-
leading spaces”. In: Science 320.5874, pp. 346–348.
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